Contents

1	Intro	oduction to Heat Transfer
	1.1	General Considerations
	1.2	Modes of Heat Transfer
		1.2.1 Conduction
		1.2.2 Convection
		1.2.3 Radiation
	1.3	Laws of Heat Transfer
		1.3.1 Conduction
		1.3.2 Convection
		1.3.3 Radiation
	1.4	Overall Heat Transfer Coefficient
_	G .	
2		dy Conduction
	2.1	Introduction
	2.2	Conduction through a Plane Wall
	2.3	Conduction through a Plane Multiwall
	2.4	Conduction through a Cylindrical Wall
	2.5	Conduction through a Cylindrical Multiwall
	2.6	Conduction through a Spherical Wall
	2.7	Conduction through Liquids and Gases
3	Tran	sient Conduction
	3.1	Introduction
	3.2	General Law of Thermal Conduction
	3.3	Surface Temperature Variation in Infinite Thickness Walls 34
	3.4	Surface Temperature Variation in Finite Thickness Walls 38
	3,5	Immersed Plane Wall in Fluid at Different Temperature 44
	3.6	Transient Conduction in Tubes
	3.7	Fourier's Number
4	Dime	ensional Analysis
•	4.1	Introduction
	4.2	Three Methods to Find Dimensionless Groups 51
		4.2.1 Algebraic Method 51

viii Contents

		4.2.2 Use of Differential Equations	3
		4.2.3 Geometric, Kinematical and Dynamical Similitude 58	8
	4.3	Theory of Models	0
5	Conv	ection	3
	5.1	Types of Motion	
	5.2	Physical Characteristics of Fluids	
	3.2	5.2.1 Water	
		5.2.2 Air	
		5.2.3 Flue Gas	
	5.3	Natural Convection	_
	5.5	5.3.1 Plane Vertical Wall and Vertical Tubes	
		5.3.2 Horizontal Cylinders	
		5.3.3 Horizontal Plane Plates	
		5.3.4 Interspace Between two Plane Walls	
	5.4	Forced Convection Inside the Tubes	-
	5.4	5.4.1 Water	
		5.4.2 Superheated Steam	
		5.4.3 Mineral Oils	
		5.4.4 Air	
		5.4.5 Different Kinds of Gas	
	5.5	Heat Transfer in the Initial Section	
	5.6	Special Instances	
	5.0	5.6.1 Annular Interspace	
		5.6.2 Plane Wall	
	5.7	Laminar Motion in the Tubes	
	5.8	Forced Convection Outside a Tube Bank	
	5.0	5.8.1 Introduction	
		5.8.2 Air	
		5.8.3 Various Types of Gas and Superheated Steam 113	
	5.9	Comparison Between In-Line and Staggered Arrangement 113	
	5.10	Heat Transfer to a Single Tube	
	5.11	Heat Transfer to Finned Tubes	
	5.12	Boiling Liquids	
	J.12	5.12.1 Boiling Liquids Outside the Tubes	-
		5.12.2 Boiling Liquids Inside the Tubes	
	5.13	Condensing Vapors	
,			
6	Radia		
	6.1		
	6.2	The Laws of Radiation	_
		6.2.1 Planck's Law	
		6.2.2 Wien's Law	
		6.2.3 Stefan-Boltzmann's Law	_

Contents ix

		6.2.5 Lambert' Law – Black Bodies Arranged in any				
		Which Way				
	6.3	Plane Surfaces Facing Each Other				
	6.4	Body Completely Contained in Another Body 154				
	6.5	Solar Radiation				
	6.6	Flame Radiation				
	6.7	Flame Radiation and Convection				
	6.8	Radiation of CO ₂ and Steam				
7	Heat	Exchangers and Tube Banks				
	7.1	Introduction				
	7.2	Mean Logarithmic Temperature Difference 192				
	7.3	Mean Specific Heat				
		7.3.1 Water and Superheated Steam 197				
		7.3.2 Air and Other Gases				
	7.4	Design Calculation				
	7.5	The Mean Difference in Temperature in Reality 199				
		7.5.1 Fluids with Cross Flow				
		7.5.2 Heat Exchangers				
		7.5.3 Coils				
		7.5.4 Tube Bank with Various Passages of the				
		External Fluid				
	7.6	Verification Calculation				
		7.6.1 General Considerations				
		7.6.2 Fluids in Parallel Flow or in Counter flow 209				
		7.6.3 Factor Ψ in Real Cases				
8	Press	ure Drops				
	8.1	Introduction				
	8.2	Distributed Pressure Drops				
		8.2.1 Turbulent Motion				
		8.2.2 Laminar Motion				
	8.3	Concentrated Pressure Drops				
	8.4	Pressure Drops through Tube Banks				
	8.5	Pressure Drop in Finned Tubes				
A	Theri	mal Characteristics of Materials				
В	Corre	ective Factors for the Design Computation in Real Cases 275				
C	Corre	ective Factors for the Verification Computation in Real Cases 299				
Bib	liogran	ohy				
	Index					