

CONTENTS

A Brief Note on the Publication of This Work xi
MENACHEM BEN-SASSON AND MARTIN STRATMANN

Foreword xiii

JOHN STACHEL

Preface xvii

THE CHARM OF A MANUSCRIPT 1

EINSTEIN'S INTELLECTUAL ODYSSEY TO GENERAL RELATIVITY 7

THE ANNOTATED MANUSCRIPT 37

The titles set in italics are Einstein's original titles featured in the manuscript; the page numbers in the titles relate to the annotated pages facing the original facsimile.

The Foundation of the General Theory of Relativity

A. Fundamental Considerations on the Postulate of Relativity

§1. Observations on the Special Theory of Relativity

- p. 1: Why did Einstein go beyond special relativity? 39
- p. 2: What was wrong with the classical notions of space and time? 41

§2. The Need for an Extension of the Postulate of Relativity

- p. 3: Why did Einstein see difficulties that others ignored? 43
- p. 4: What was Einstein's happiest thought and how did it come about? 45

§3. The Spacetime Continuum. Requirement of General Covariance for the Equations Expressing General Laws of Nature

- p. 5: Why does Einstein's theory of gravitation require non-Euclidean geometry? 47
- p. 6: What is the role of coordinates in the new theory of gravitation? 49
- p. 7: What is the meaning of general covariance? 51

§4. The Relation of the Four Coordinates to Measurement in Space and Time

- p. 8: What is the geometry of spacetime? 53
- p. 9: When did Einstein realize that gravitation has to be described by a complex mathematical expression? 55

B. Mathematical Aids to the Formulation of Generally Covariant Equations

§5. Contravariant and Covariant Four-vectors

- p. 10: Why tensors, vectors, scalars? 57

CONTENTS

- p. 11: When did Einstein realize that he needed more sophisticated mathematical methods? 59
- §6. Tensors of the Second and Higher Ranks**
 - p. 12: What lessons could be learned from the theory of electromagnetism? 61
- §7. Multiplication of Tensors**
 - p. 13: How can tensors be manipulated to produce new tensors by different tensor operations? 63
 - p. 13: What were Einstein's heuristic guidelines in his search for a relativistic theory of gravitation? 63
 - p. 14: What was Einstein's strategy in constructing a gravitational field equation? 65
- §8. Some Aspects of the Fundamental Tensor $g_{\mu\nu}$**
 - p. 15: Why is the metric tensor so fundamental? 67
 - p. 16: Why is the Zurich Notebook a unique document in the history of physics? 69
 - p. 16: How are volumes measured in curved spacetime? 69
 - p. 17: How can a convenient choice of coordinates simplify the theory? 71
 - p. 17: What is the difference between a *coordinate condition* and a *coordinate restriction*? 71
- §9. The Equation of the Geodetic Line. The Motion of a Particle**
 - p. 18: What is the meaning of a "straight line" in curved space, and how does a particle move under the influence of gravitation? 73
 - p. 19: What is the geometric and physical meaning of "Christoffel symbols"? 75
 - p. 19: What was Einstein's "fatal prejudice" in the early identification of the gravitational field components? 75
- §10. The Formation of Tensors by Differentiation**
 - p. 20: The geodetic line as the "straightest" possible line and its relation to the concept of "affine connection" 77
 - p. 21: How do tensors change between neighboring points, or how can one produce new tensors from given tensors by differentiation? 79
 - p. 22: What is the geometric context of Einstein's mathematical formulation of general relativity? 81
- §11. Some Cases of Special Importance**
 - p. 23: The *Entwurf* theory as an intermediate step toward the general theory of relativity 83
 - p. 24: What is the *divergence* of a vector field? What are other vector field concepts? 85
 - p. 25: What is the mathematical formulation of energy-momentum conservation in general relativity? 87
- §12. The Riemann-Christoffel Tensor**
 - p. 26: What is the geometric meaning of the Riemann-Christoffel tensor? 89
 - p. 27: What was the "presumed gravitational tensor" and why was it abandoned? 91

CONTENTS

C. Theory of the Gravitational Field

§13. Equations of Motion of a Material Point in the Gravitational Field.

Expression for the Field-components of Gravitation

p. 28: When did Einstein lose faith in the *Entwurf* theory? 93

p. 28: How does a particle move in a gravitational field? 93

§14. The Field Equations of Gravitation in the Absence of Matter

p. 29: What was Einstein's greatest challenge? 95

§15. The Hamiltonian Function for the Gravitational Field. Laws of Momentum and Energy

p. 30: What is the Lagrangian formalism, and what was its role in the genesis of general relativity? 97

p. 31: What happens to the energy-momentum conservation principle in the absence of matter, or can the gravitational field be a source of itself? 99

p. 31: Who was Einstein's main competitor? 99

p. 32: How can the field equation without matter be generalized to include matter? 101

§16. The General Form of the Field Equations of Gravitation

p. 33: The gravitational field equation—at last! 103

§17. The Laws of Conservation in the General Case

p. 34: How is the conservation principle satisfied in a way that Einstein did not expect in the early stages of development of his theory? 105

§18. The Laws of Momentum and Energy for Matter, as a Consequence of the Field Equations

p. 35: Do physical conservation laws follow from symmetries in nature? 107

D. Material Phenomena

§19. Euler's Equations for a Frictionless Adiabatic Fluid

p. 36: How do established theories in physics, like hydrodynamics and electromagnetism, fit into the new theory of gravitation? 109

§20. Maxwell's Electromagnetic Field Equations for Free Space

p. 37: How did Maxwell represent the laws of electromagnetism by mathematical equations and how are these equations affected by gravitation? 111

p. 38: What was the role of “ether” in prerelativity physics, and why did Einstein eventually think that space without ether is unthinkable? 113

p. 39: What was von Laue's crucial role? 115

E.

§21. Newton's Theory as a First Approximation

p. 40: How can the validity of the theory be tested experimentally? 117

p. 40a: What did Einstein wish to clarify and emphasize as an afterthought? 119

p. 41: What does the metric tensor look like in the Newtonian limit? 121

p. 41: Why was Einstein pleasantly surprised? 121

p. 42: How could astronomers help confirm certain predictions of the theory? 123

CONTENTS

§22. Behavior of Rods and Clocks in the Static Gravitational Field. Bending of Light-rays. Motion of the Perihelion of a Planetary Orbit

p. 43: What is the length of rods and the pace of clocks in a gravitational field? 125
p. 43: Is there a “viable” alternative theory to general relativity? 125
p. 44: What observation catapulted Einstein to world celebrity status? 127
p. 45: Explanation of the motion of perihelion of planet Mercury: From disappointment to triumph 129

Appendix: Presentation of the Theory on the Basis of a Variational Principle

§1. The Field Equations of Gravitation and Matter

p. A1: Why did Einstein decide not to include this “Appendix” in the printed version of the manuscript “Foundation of General Relativity”? 131
p. A1: Einstein applies a Hamiltonian (Lagrangian) formulation—different from Hilbert’s and different from his own previous one 131
p. A2: Why did Einstein decide to publish a modified version of this appendix after all? What were the roles of Lorentz and Hilbert? 133

§2. Formal Consequences of the Requirement of General Covariance

p. A3: Is the conservation principle satisfied without any restrictions? 135

§3. Properties of Hamilton’s Function G

p. A3: 1916: A year of hard work and new beginnings 135
p. A4: Einstein acts as a missionary of science 137
p. A5: Scientific creativity in the midst of personal hardships and national disaster 139

NOTES ON THE ANNOTATION PAGES 141

POSTSCRIPT: THE DRAMA CONTINUES . . . 149

A Chronology of the Genesis of General Relativity and Its Formative Years 159

Physicists, Mathematicians, and Philosophers Relevant to Einstein’s Thinking 165

Further Reading 179

English Translation of “The Foundation of the General Theory of Relativity” 183

English Translation of “Hamilton’s Principle and the General Theory of Relativity” 227

Index 233