Contents

Preface ---- IX

1	Governing equations —— 1
1.1	Introduction —— 1
1.2	The Navier-Stokes equations for incompressible viscous flow —— 1
1.2.1	Model —— 1
1.2.2	Variational formulations of the Navier–Stokes equations —— 4
1.3	Appendix A: Derivation of the flow models — 7
1.3.1	Remark on the momentum equation $(1.1) - 7$
1.3.2	Remark on the variational formulation (1.17) —— 8
1.3.3	Remark on the variational formulation (1.20) —— 10
2	Operator splitting methods for initial value problems: Application to the
	Navier-Stokes equations 13
2.1	A family of initial value problems —— 13
2.2	Operator splitting of the autonomous initial value problem (2.1) by the Lie scheme —— 14
2.3	Operator splitting of the autonomous initial value problem (2.1) by the Strang scheme —— 15
2.4	Fractional-step schemes à la Marchuk–Yanenko —— 16
2.5	Application to the Navier–Stokes equations —— 18
2.6	Appendix B: Remarks on the Lie scheme (2.3) —— 20
3	Advection problems —— 23
3.1	The wave-like equation method —— 23
3.2	Properties of scheme (3.17)–(3.19) —— 28
4	Numerical solution of the generalized Stokes-type subproblems —— 37
4.1	Mathematical properties of the generalized Stokes problem (4.1) —— 37
4.2	The Stokes operator —— 39
4.3	Existence results for the generalized Stokes problem (4.6) —— 44
4.4	A saddle-point interpretation of the generalized Stokes problem (4.1) —— 45
4.5	A gradient method for the generalized Stokes problem —— 47
4.6	Conjugate gradient algorithms for the generalized Stokes problems —— 60
4.7	Appendix C: Conjugate gradient methods for the solution of minimization problems in Hilbert spaces —— 70
4.7.1	Conjugate gradient solution of linear variational problems in Hilbert spaces — 70

5	Finite-element approximation of the Navier-Stokes equations 79
5.1	Finite-element methods for the Stokes problem —— 80
5.1.1	Some observations —— 80
5.1.2	Discrete spaces — 84
5.1.3	Approximation of the boundary conditions —— 85
5.1.4	Formulation of the discrete generalized Stokes problem —— 86
5.1.5	On the convergence of the finite element approximations of the generalized Stokes problem —— 89
5.2	Finite-element implementation of the projection/wave-like equation methods —— 101
5.2.1	Projection methods —— 101
5.3	On the numerical solution of the discrete subproblems —— 103
5.4	Appendix D: Proofs of Lemma 5.4.1, Theorems 5.1.5, 5.1.8, and Corollary 5.1.6 —— 107
6	Numerical experiments: Description and results —— 117
6.1	Performance of the preconditioned conjugate gradient method and numerical errors for the Bercovier-Pironneau finite-element approximation of the Stokes problem —— 117
6.2	A two-dimensional wall-driven cavity problem —— 121
6.3	A three-dimensional wall-driven cavity problem —— 132
6.3.1	Numerical results —— 133
7	Further applications (I): A distributed Lagrange multiplier/fictitious-domain method for simulating lid-driven viscous flows in a hemispherical cavity —— 144
7.1	Introduction to fictitious-domain methods: Principle, historical facts and synopsis —— 144
7.2	Governing equations —— 146
7.3	A distributed Lagrange multiplier/fictitious-domain formulation —— 147
7.4	Finite-element approximation of problem (7.17)–(7.20) —— 148
7.5	Time discretization of problem (7.23)–(7.27) by operator-splitting methods —— 150
7.5.1	Solution of the subproblems in schemes (7.28) – (7.32) and (7.33) – (7.36) — 152
7.6	Numerical results —— 154
8	Further applications (II): On the simulation of the lid-driven cavity flow of an Oldroyd-B fluid —— 164
8.1	Introduction —— 164
8.2	Formulation of the problem —— 165
8.3	Scheme and discretizations —— 166

8.4	Numerical experiments —— 171
8.4.1	Regular triangular meshes —— 172
8.4.2	Locally-refined triangular meshes —— 175
9	Further applications (III): A distributed Lagrange
	multiplier/fictitious-domain method for simulating particles settling in an
	Oldroyd-B fluid —— 180
9.1	Introduction —— 180
9.2	Mathematical formulation —— 181
9.2.1	The governing equations —— 181
9.2.2	A fictitious-domain formulation —— 183
9.3	Numerical methods and an operator-splitting scheme —— 186
9.3.1	Finite-element approximation —— 186
9.3.2	An operator-splitting scheme —— 188
9.4	On the solutions of the fractional step subproblems —— 191
9.4.1	Solution of the discrete degenerated Stokes subproblem (9.47) —— 192
9.4.2	Solution of the rigid body motion enforcement problems (9.55) — 194
9.5	Numerical results —— 196
9.6	Conclusions —— 201
Bibliog	raphy —— 203

Index ---- 213