

Contents

Preface to the second edition — V

1 Flash Point — 1

- 1.1 Measurement of the FP — 2
- 1.2 Predictive methods of the FP for pure compounds — 5
 - 1.2.1 Empirical models — 5
 - 1.2.2 The SGC methods — 40
 - 1.2.3 QSPR models — 48
- 1.3 Estimation methods of the FP for mixtures — 69
 - 1.3.1 Mixing rules — 70
 - 1.3.2 Assessment of combination of the mixing rule of Liaw et al. and QSPR models — 72
 - 1.3.3 Empirical methods for liquid mixtures — 72
- 1.4 Summary — 76

2 Autoignition — 77

- 2.1 Measurement of the AIT — 78
- 2.2 Predictive methods of the AIT for pure compounds — 79
 - 2.2.1 The use of SGC by a polynomial of degree 3 for organic compounds — 81
 - 2.2.2 A simple QSPR model for various classes of hydrocarbons — 84
 - 2.2.3 A new and reliable model for prediction of the AIT of organic compounds containing energetic groups — 86
 - 2.2.4 Simple method to assess the AIT of organic ether compounds with high reliability — 92
 - 2.2.5 Reliable prediction of autoignition temperature of organic hydroxyl compounds — 94
- 2.3 Autoignition and ignition delay — 96
- 2.4 Summary — 101

3 Flammability Limit — 103

- 3.1 Measurement of the LFL and UFL — 103
- 3.2 Predictive methods of the flammability limits — 104
 - 3.2.1 The predicted LFL as a function of temperature — 105
 - 3.2.2 The use of SGC method for prediction of the LFL and UFL of pure hydrocarbons — 106
 - 3.2.3 Extended method for prediction of the UFL of pure compounds — 110
 - 3.2.4 Machine learning-developed models for prediction of LFL and UFL — 113

3.3	Flammability limit estimation of the hydrocarbon-inert gas mixture — 115
3.4	Summary — 117
4	Heat of Combustion — 119
4.1	Experimental methods for determination of heats of combustion — 120
4.2	Different approaches for prediction of the heats of combustion — 121
4.2.1	Predicting the standard net heat of combustion for pure hydrocarbons from their molecular structure — 123
4.2.2	Prediction of the standard net heat of combustion from molecular structure — 126
4.2.3	A comprehensive methodology for prediction of the net heat of combustion from group contribution-based property models — 129
4.2.4	A generally applicable group additivity method for the calculation of the gross heat of combustion of organic compounds as well as salts and ionic liquids — 136
4.2.5	Machine learning-developed models of prediction of the net heat of combustion of organic compounds — 143
4.2.6	Reliable predictions of the net heat of combustion of organosilicon compounds — 144
4.2.7	A new method for predicting the gross heat of combustion of polynitro arene, polynitro heteroarene, acyclic and cyclic nitramine, nitrate ester and nitroaliphatic compounds — 145
4.3	Summary — 149
5	Polymer Flammability — 151
5.1	Experimental method based on pyrolysis combustion flow calorimetry — 152
5.2	Different approaches for prediction of flammability parameters — 153
5.2.1	SGC method of Walters and Lyon for prediction of the heat release capacity — 154
5.2.2	SGC method of Lyon et al. for prediction of total heat release (heat of combustion), char yield, and heat release capacity — 158
5.2.3	The simplest model for reliable prediction of total heat release (heat of combustion) — 162
5.2.4	A simple model for reliable prediction of the specific heat release capacity of polymers — 164

5.2.5 A simple method for the reliable prediction of char yield of
polymers — **165**
5.3 Summary — **170**

Problems — **171**

Answers to Problems — **175**

List of Symbols — **177**

Appendix A — **183**

Appendix B — **223**

Appendix C — **241**

Appendix D — **255**

References — **259**

About the Author — **275**

Index — **277**