Contents

Int	roduct	ion	
1.1	Gener	al Background	
1.2	Histor	rical Background of Multi-source Learning and Data	
	Fusion	n	
	1.2.1	Canonical Correlation and Its Probabilistic	
		Interpretation	
	1.2.2	Inductive Logic Programming and the Multi-source	
		Learning Search Space	
	1.2.3	Additive Models	
	1.2.4	Bayesian Networks for Data Fusion	
	1.2.5	Kernel-based Data Fusion	
1.3	Topic	s of This Book	
1.4	Chapt	ter by Chapter Overview	
Ref	erences		
Ra	Rayleigh Quotient-Type Problems in Machine		
Lea	rning.		
2.1	Ontin		
	Opun	nization of Rayleigh Quotient	
	2.1.1	nization of Rayleigh Quotient	
	_	nization of Rayleigh Quotient	
	2.1.1	nization of Rayleigh Quotient	
	2.1.1 2.1.2	nization of Rayleigh Quotient	
2.2	2.1.1 2.1.2 2.1.3	nization of Rayleigh Quotient	
2.2	2.1.1 2.1.2 2.1.3	nization of Rayleigh Quotient	
2.2	2.1.1 2.1.2 2.1.3 Rayle	Rayleigh Quotient	
2.2	2.1.1 2.1.2 2.1.3 Rayle 2.2.1	Rayleigh Quotient	
2.2	2.1.1 2.1.2 2.1.3 Rayle 2.2.1 2.2.2	Rayleigh Quotient	
2.2	2.1.1 2.1.2 2.1.3 Rayle 2.2.1 2.2.2 2.2.3	Rayleigh Quotient	

VIII Contents

		2.2.7 One Class Support Vector Machine	34			
	2.3	Summary	35			
	Refe	rences	37			
	т.	Note: 1 To 1 T				
3	L_n -norm Multiple Kernel Learning and Least Squares					
		port Vector Machines	39			
	$\frac{3.1}{3.2}$	Background	39			
		Acronyms	40			
	3.3	The Norms of Multiple Kernel Learning	42 42			
		3.3.1 L_{∞} -norm MKL				
			43			
	9.4	3.3.3 L_n -norm MKL	44			
	3.4	One Class SVM MKL	46			
	3.5	Support Vector Machine MKL for Classification	48			
		3.5.1 The Conic Formulation	48			
	9.0	3.5.2 The Semi Infinite Programming Formulation	50			
	3.6	Least Squares Support Vector Machines MKL for	F 0			
		Classification	53			
		3.6.1 The Conic Formulation	53			
	9.77	3.6.2 The Semi Infinite Programming Formulation	54			
	3.7	Weighted SVM MKL and Weighted LSSVM MKL	56			
		3.7.1 Weighted SVM	56			
		3.7.2 Weighted SVM MKL	56			
		3.7.3 Weighted LSSVM	57			
	0.0	3.7.4 Weighted LSSVM MKL	58			
	3.8	Summary of Algorithms	58 59			
	3.9	Numerical Experiments				
			59 59			
		3.9.2 QP Formulation Is More Efficient than SOCP 3.9.3 SIP Formulation Is More Efficient than QCQP	60			
	9.10					
	3.10	MKL Applied to Real Applications	63 63			
		3.10.1 Experimental Setup and Data Sets	67			
	0 11	3.10.2 Results	83			
		Discussions	84			
		Summary	-			
	Reie	ences	84			
4	Opt	mized Data Fusion for Kernel k-means				
		tering	89			
	4.1					
	4.2	3				
	4.3					
	4.4	Bi-level Optimization of k -means on Multiple Kernels	94			
		4.4.1 The Role of Cluster Assignment	94			
		4.4.2 Ontimizing the Kernel Coefficients as KFD	Q_{Δ}			

Contents

		4.4.3	Solving KFD as LSSVM Using Multiple Kernels	96
		4.4.4	Optimized Data Fusion for Kernel k-means	
			Clustering (OKKC)	98
		4.4.5	Computational Complexity	98
	4.5	Exper	rimental Results	99
		4.5.1	Data Sets and Experimental Settings	99
		4.5.2	Results	101
	4.6	Sumn	nary	103
	Refe	erences		105
5			w Text Mining for Disease Gene Prioritization	
			tering	109
	5.1		luction	109
	5.2	_	ground: Computational Gene Prioritization	110
	5.3		ground: Clustering by Heterogeneous Data Sources	111
	5.4		e View Gene Prioritization: A Fragile Model with	
			ect to the Uncertainty	112
	5.5		Fusion for Gene Prioritization: Distribution Free	
			od	112
	5.6		-view Text Mining for Gene Prioritization	116
		5.6.1	Construction of Controlled Vocabularies from	
			Multiple Bio-ontologies	116
		5.6.2	Vocabularies Selected from Subsets of Ontologies	119
		5.6.3	Merging and Mapping of Controlled Vocabularies	119
		5.6.4	Text Mining	122
		5.6.5	Dimensionality Reduction of Gene-By-Term Data	
			by Latent Semantic Indexing	122
		5.6.6	Algorithms and Evaluation of Gene Prioritization	
			Task	123
		5.6.7	Benchmark Data Set of Disease Genes	124
	5.7		ts of Multi-view Prioritization	124
		5.7.1	Multi-view Performs Better than Single View	124
		5.7.2	Effectiveness of Multi-view Demonstrated on	
			Various Number of Views	126
		5.7.3	Effectiveness of Multi-view Demonstrated on	
			Disease Examples	127
	5.8		-view Text Mining for Gene Clustering	130
		5.8.1	Algorithms and Evaluation of Gene Clustering	
			Task	130
		5.8.2	Benchmark Data Set of Disease Genes	132
	5.9		ts of Multi-view Clustering	133
		5.9.1	Multi-view Performs Better than Single View	133
		5.9.2	J	
			Profiles for Clustering	135

		5.9.3	Multi-view Approach Is Better than Merging	
			Vocabularies	137
		5.9.4	Effectiveness of Multi-view Demonstrated on	
			Various Numbers of Views	137
		5.9.5	Effectiveness of Multi-view Demonstrated on	
			Disease Examples	137
			ssions	139
	5.11	Sumn	nary	140
	Refe	erences		141
6			d Data Fusion for k -means Laplacian	
			g	145
	6.1		duction	145
	6.2		nyms	146
	6.3		ine Kernel and Laplacian for Clustering	149
		6.3.1	Combine Kernel and Laplacian as Generalized	
			Rayleigh Quotient for Clustering	149
		6.3.2	Combine Kernel and Laplacian as Additive Models	
			for Clustering	150
	6.4		ering by Multiple Kernels and Laplacians	151
		6.4.1	Optimize A with Given θ	153
		6.4.2	Optimize θ with Given A	153
		6.4.3	Algorithm: Optimized Kernel Laplacian	
			Clustering	155
	6.5		Sets and Experimental Setup	156
	6.6		ts	158
	6.7		nary	170
	Refe	erences		171
7	We		Multiple Kernel Canonical Correlation	173
	7.1		duction	173
	7.2		nyms	174
	7.3	Weigh	nted Multiple Kernel Canonical Correlation	175
		7.3.1	Linear CCA on Multiple Data Sets	175
		7.3.2	Multiple Kernel CCA	175
		7.3.3	Weighted Multiple Kernel CCA	177
	7.4	Comp	outational Issue	178
		7.4.1	Standard Eigenvalue Problem for WMKCCA	178
		7.4.2	Incomplete Cholesky Decomposition	179
		7.4.3	Incremental Eigenvalue Solution for WMKCCA	180
	7.5	Learn	ing from Heterogeneous Data Sources by	
		WMKCCA		181
	7.6	Exper	riment	183
		7.6.1	Classification in the Canonical Spaces	183
		7.6.2	Efficiency of the Incremental EVD Solution	185

Contents XI

		7.6.3 Visualization of Data in the Canonical Spaces	185
	7.7	Summary	189
	Refe	erences	190
8	Cro	ss-Species Candidate Gene Prioritization with	
		rKator	191
	8.1	Introduction	191
	8.2	Data Sources	192
	8.3	Kernel Workflow	194
		8.3.1 Approximation of Kernel Matrices Using	
		Incomplete Cholesky Decomposition	194
		8.3.2 Kernel Centering	195
		8.3.3 Missing Values	197
	8.4	Cross-Species Integration of Prioritization Scores	197
	8.5	Software Structure and Interface	200
	8.6	Results and Discussion	201
	8.7	Summary	203
	Refe	erences	204
9	Cor	nclusion	207
Inc	lex		209