

Contents

Preface — V

List of contributing authors — XIII

Debasree Saha and Chhanda Mukhopadhyay

1 **Recent developments in C–C bond formation catalyzed by solid supported palladium: a greener perspective — 1**

- 1.1 Introduction — 1
- 1.2 Palladium supported on carbon black — 2
- 1.3 Palladium supported on carbon nanotubes — 3
- 1.4 Palladium supported on graphene and graphene oxide — 6
- 1.5 Palladium supported on organic supports — 8
- 1.6 Conclusions — 14
- References — 14

Sumit Ghosh and Alakananda Hajra

2 **Visible-light-mediated metal-free C–Si bond formation reactions — 17**

- 2.1 Introduction — 17
- 2.2 C–Si bond formation of alkenes — 19
- 2.3 C–Si bond formation of alkynes — 26
- 2.4 C–Si bond formation of allene — 28
- 2.5 Silylation of arenes and heteroarenes — 29
- 2.6 Silylation of dienes — 31
- 2.7 Synthetic application — 32
- 2.8 Conclusions — 33
- References — 33

Tejeswara Rao Allaka, Naresh Kumar Katari and Sreekanth Babu Jonnalagadda

3 **Synthesis of antiviral drugs by using carbon–carbon and carbon–heteroatom bond formation under greener conditions — 37**

- 3.1 Introduction — 37
- 3.1.1 Synthesis of antiviral compounds by using green chemistry — 44
- 3.1.2 Contribution of organic electrolysis synthesis to green chemistry — 49
- 3.2 Conclusions — 55
- References — 55

Rajesh Kumar, Jyotirmoy Maity, Divya Mathur, Abhishek Verma, Neha Rana, Manish Kumar, Sandeep Kumar and Ashok K. Prasad

4 **Green synthesis of triazolo-nucleoside conjugates via azide–alkyne C–N bond formation — 61**

- 4.1 Introduction — 61

4.2	Synthesis — 63
4.2.1	Synthesis of C-1' triazolo-nucleosides — 63
4.2.2	Synthesis of C-2'-triazolo-nucleosides — 84
4.2.3	Synthesis of C-3'-triazolo-nucleosides — 86
4.2.4	Synthesis of C-4'-triazolo-nucleosides — 95
4.2.5	Synthesis of C-5'-triazolo-nucleosides — 95
4.3	Conclusions — 99
	References — 99

Yadavalli Venkata Durga Nageswar and Ramesh Katla

5 An overview of quinoxaline synthesis by green methods: recent reports — 105

5.1	Introduction — 105
5.2	Reactions conducted in aqueous medium — 106
5.3	Reactions conducted at room temperature — 115
5.4	Reactions conducted under microwave energy — 131
5.5	Solvent-free reactions — 137
5.6	Light initiated synthesis — 142
5.7	Application of ultrasonication — 144
5.8	Reactions employing recyclable catalysts — 145
5.9	Reactions conducted at above room temperatures — 150
5.10	Conclusions — 166
	References — 168

Suchandra Bhattacharya and Basudeb Basu

6 Green protocols for Tsuji–Trost allylation: an overview — 175

6.1	Introduction — 175
6.2	Eco-friendly approaches towards Tsuji–Trost allylation — 177
6.2.1	Synthesis of benzylated and allylated moieties — 177
6.2.2	Synthesis of <i>N</i> -allylated moieties — 178
6.2.3	Synthesis of <i>S</i> -allylated moieties — 179
6.2.4	Synthesis of <i>O</i> -allylated moieties — 180
6.2.5	Other approaches: versatility of the catalyst — 181
6.3	Conclusions — 183
	References — 183

Sriparna Dutta, Prashant Kumar, Sneha Yadav, Ranjana Dixit, and Rakesh Kumar Sharma

7 Recyclable magnetically retrievable nanocatalysts for C–heteroatom bond formation reactions — 189

7.1	Introduction — 190
-----	--------------------

7.2	Fabrication of magnetic nanoparticles for the designing of magnetically recyclable nanocatalysts — 191
7.2.1	Iron oxides — 191
7.2.2	Mixed spinels (CoFe ₂ O ₄ NPs, CuFe ₂ O ₄ NPs, NiFe ₂ O ₄ NPs, MnFe ₂ O ₄ NPs, ZnFe ₂ O ₄ NPs) — 195
7.3	Strategies of imparting durability to the magnetic nanoparticles — 198
7.3.1	Coating — 198
7.3.2	Functionalization — 200
7.4	Applications of magnetic nanocatalysts in C–heterobond formation reactions — 200
7.4.1	C–N bond formation — 201
7.4.2	C–O coupling — 208
7.4.3	C–S coupling — 211
7.4.4	Miscellaneous reactions — 216
7.5	Conclusion and future perspectives — 217
	References — 218

Anshu Dandia, Sonam Parihar, Krishan Kumar, Surendra Saini, and Vijay Parewa

8	Carbocatalysis: a metal free green avenue towards carbon–carbon/heteroatom bond construction — 225
8.1	Introduction — 225
8.2	Catalysis — 228
8.3	Carbocatalysis — 228
8.3.1	Graphene oxide (GO) — 229
8.3.2	Graphitic carbon nitride (g-C ₃ N ₄) — 242
8.3.3	Carbon quantum dots (CQDs) — 245
8.4	Conclusions — 253
	References — 254

Hosam M. Saleh and Amal I. Hassan

9	Use of heterogeneous catalysis in sustainable biofuel production — 257
9.1	Introduction — 257
9.2	Viability of heterocatalysts for biodiesel generation — 259
9.3	Production of liquid fuels with conventional catalysts — 262
9.4	Natural materials-based catalysis system for biofuel production — 264
9.5	The importance of heterogeneous catalytic activity towards aqueous ethanol in biofuel production — 267
9.6	The future of energy and the environment with the use of aqueous heterogeneous catalysis — 270
9.7	Conclusions — 271
	References — 272

Rabindranath Singha, Puja Basak and Pranab Ghosh

10 Catalytic applications of graphene oxide towards the synthesis of bioactive scaffolds through the formation of carbon–carbon and carbon–heteroatom bonds — 279

10.1 Introduction — 279
10.2 Scope of this review — 282
10.2 Chemical method for the preparation of graphene oxide (GO) — 282
10.3 Structural analysis of GO — 283
10.4 Graphene oxide (GO) as an effective metal-free catalyst in organic transformation — 283
10.4.1 Graphene-based catalyst towards the formation of C–C and C–heteroatom bond — 283
10.5 Conclusions — 296
10.5 References — 296

Daniela Hartwig, Liane K. Soares, Luiz H. Dapper, José E. R. Nascimento, and Eder João Lenardão

11 Dicarbonyl compounds in the synthesis of heterocycles under green conditions — 303

11.1 Introduction — 303
11.2 Green solvents in organic synthesis — 304
11.3 Solvent-free conditions — 307
11.4 Green catalytic systems — 313
11.5 Heterogeneous catalysis — 321
11.6 Organocatalyzed reactions — 325
11.7 Catalyst-free conditions — 328
11.8 Photochemical activation — 334
11.9 Sonochemistry in the synthesis of heterocycles — 338
11.10 Microwave-assisted synthesis of heterocycles — 341
11.11 Electrochemical redox reactions — 344
11.12 Conclusions — 345
11.12 References — 346

Jayathirtha Rao Vaidya and Yadavalli Venkata Durga Nageswar

12 Polyaniline mediated heterogeneous catalysis in the preparation of heterocyclic derivatives through carbon–heteroatom bond formations — 353

12.1 Introduction — 353
12.2 Applications of polyaniline mediated heterogeneous catalysis for the synthesis of various heterocyclic derivatives — 354
12.2.1 Synthesis of dihydropyrimidinones — 354

12.2.2	Synthesis of 7-membered diazepines and 5-membered benzimidazoles — 355
12.2.3	Synthesis of spiro compounds and procedure for making PANI nanorods — 356
12.2.4	Synthesis of PANI nanorods — 357
12.2.5	Synthesis of pyran derivatives — 358
12.2.6	Triazole derivatives — 358
12.2.7	Quinoxalines — 359
12.2.8	Tetrahydroquinolines — 361
12.2.9	Carbon–nitrogen coupling — 361
12.2.10	Substituted indoles — 362
12.2.11	Formylations — 363
12.2.12	Indolo-chromenes, bisindoles and chromenes — 364
12.2.13	Chromene derivatives — 365
12.3	Addition of nitrogen to open chain compounds — 367
12.3.1	Synthesis of β -aminocarbonyl compounds — 367
12.3.2	Synthesis of β -aminocarbonyl compounds by direct addition — 368
12.4	Conclusions — 368
	References — 369

Index — 373
