Contents

ro		c	
	ıа	С	

Chapt	er 1 Crystals·····	1
1.1	Periodicity of crystal structure, crystal cell······	1
1.2	Three-dimensional lattice types · · · · · · · · · · · · · · · · · · ·	
1.3	Symmetry and point groups·····	3
1.4	Reciprocal lattice · · · · · · · · · · · · · · · · · · ·	
1.5	Appendix of Chapter 1: Some basic concepts · · · · · · · · · · · · · · · · · · ·	6
Ref	erences · · · · · · · · · · · · · · · · · · ·	• 10
Chapt	er 2 Framework of the classical theory of elasticity	· 13
2.1	Review on some basic concepts · · · · · · · · · · · · · · · · · · ·	
2.2	Basic assumptions of theory of elasticity · · · · · · · · · · · · · · · · · · ·	· 16
2.3	Displacement and deformation · · · · · · · · · · · · · · · · · · ·	
2.4	Stress analysis and equations of motion · · · · · · · · · · · · · · · · · · ·	
2.5	Generalized Hooke's law · · · · · · · · · · · · · · · · · · ·	
2.6	Elastodynamics, wave motion · · · · · · · · · · · · · · · · · · ·	
2.7	Summary·····	
Ref	erences·····	
Chapt	• • •	· 25
3.1	Discovery of quasicrystal · · · · · · · · · · · · · · · · · · ·	
3.2	Structure and symmetry of quasicrystals · · · · · · · · · · · · · · · · · · ·	
3.3	A brief introduction on physical properties of quasicrystals · · · · · · · · · ·	· 29
3.4	One-, two- and three-dimensional quasicrystals······	• 30
3.5	Two-dimensional quasicrystals and planar quasicrystals · · · · · · · · · · · · · · · · · · ·	• 30
	erences·····	
Chapt	er 4 The physical basis of elasticity of quasicrystals	·35
4.1	Physical basis of elasticity of quasicrystals · · · · · · · · · · · · · · · · · · ·	
4.2	Deformation tensors · · · · · · · · · · · · · · · · · · ·	
4.3	Stress tensors and the equations of motion · · · · · · · · · · · · · · · · · · ·	· 38
4.4	Free energy and elastic constants	• 40
4.5	Generalized Hooke's law · · · · · · · · · · · · · · · · · · ·	
4.6	Boundary conditions and initial conditions	• 42
4.7	A brief introduction on relevant material constants of quasicrystals	• 43
4.8	Summary and mathematical solvability of boundary value or initial-	

viii Contents

	boundary value problem · · · · · · 44
4.9	Appendix of Chapter 4: Description on physical basis of elasticity of
	quasicrystals based on the Landau density wave theory · · · · · · · 46
Re	$^{\circ}$ erences · · · · · · · · · · · · · · · · · · ·
Chap	ter 5 Elasticity theory of one-dimensional quasicrystals and
	$\mathbf{simplification} \cdots \cdots$
5.1	Elasticity of hexagonal quasicrystals · · · · · · 54
5.2	Decomposition of the problem into plane and anti-plane problems · · · · · 56
5.3	Elasticity of monoclinic quasicrystals······58
5.4	
5.5	Tetragonal quasicrystals · · · · · · 62
5.6	The space elasticity of hexagonal quasicrystals · · · · · · · 63
5.7	Other results of elasticity of one-dimensional quasicrystals · · · · · · · 65
Re	\hat{c} erences · · · · · · · · · · · · · · · · · · ·
Chapt	ter 6 Elasticity of two-dimensional quasicrystals and
	$\mathbf{simplification} \cdots \cdots$
6.1	Basic equations of plane elasticity of two-dimensional quasicrystals:
	point groups 5m and 10mm in five- and ten-fold symmetries · · · · · · · · 71
6.2	Simplification of the basic equation set: displacement potential
	function method······76
6.3	Simplification of the basic equations set: stress potential function
	method · · · · · · · · 79
6.4	
	decagonal quasicrystals · · · · · · 81
6.5	Plane elasticity of point group 12mm of dodecagonal quasicrystals · · · · · 85
6.6	Plane elasticity of point group 8mm of octagonal quasicrystals,
	displacement potential·····89
6.7	
	$\overline{10}$ decagonal quasicrystals $\cdots 94$
6.8	Stress potential of point group 8mm octagonal quasicrystals · · · · · · · · 95
6.9	Engineering and mathematical elasticity of quasicrystals · · · · · · 98
Rei	erences · · · · · · · · · · · · · · · · · · ·
Chapt	er 7 Application I: Some dislocation and interface problems
	and solutions in one- and two-dimensional quasicrystals $\cdots 103$
7.1	Dislocations in one-dimensional hexagonal quasicrystals $\cdots 104$
7.2	Dislocations in quasicrystals with point groups 5m and 10mm
	symmetries · · · · · · · 106
7.3	Dislocations in quasicrystals with point groups $5, \bar{5}$ five-fold and $10,$

	$\overline{10}$ ten-fold symmetries · · · · · · · · · · · · · · · · · · ·
7.4	Dislocations in quasicrystals with eight-fold symmetry · · · · · · · · 117
7.5	Dislocations in dodecagonal quasicrystals · · · · · · 120
7.6	Interface between quasicrystal and crystal · · · · · · 120
7.7	Conclusion and discussion $\cdots 124$
Refe	rences · · · · · · · · · · · · · · · · · · ·
Chapte	er 8 Application II: Solutions of notch and crack problems
	of one-and two-dimensional quasicrystals · · · · · · · 127
8.1	Crack problem and solution of one-dimensional quasicrystals $\cdots\cdots 128$
8.2	Crack problem in finite-sized one-dimensional quasicrystals $\cdots\cdots 134$
8.3	Griffith crack problems in point groups 5m and 10mm quasicrystals
	based on displacement potential function method $\cdots 139$
8.4	Stress potential function formulation and complex variable function
	method for solving notch and crack problems of quasicrystals of point
	groups 5, $\overline{5}$ and 10, $\overline{10}$
8.5	Solutions of crack/notch problems of two-dimensional octagonal
	quasicrystals
8.6	Other solutions of crack problems in one-and two-dimensional
	quasicrystals · · · · · · 153
8.7	Appendix of Chapter 8: Derivation of solution of Section 8.1 · · · · · · · · 154
Refe	rences · · · · · · · · · · · · · · · · · · ·
Chapte	er 9 Theory of elasticity of three-dimensional quasicrystals
	and its applications ·······159
9.1	Basic equations of elasticity of icosahedral quasicrystals $\cdots\cdots 160$
9.2	Anti-plane elasticity of icosahedral quasicrystals and problem of
	interface between quasicrystal and crystal······164
9.3	Phonon-phason decoupled plane elasticity of icosahedral
	quasicrystals · · · · · · 168
9.4	Phonon-phason coupled plane elasticity of icosahedral quasicrystals—
	displacement potential formulation · · · · · · 169
9.5	Phonon-phason coupled plane elasticity of icosahedral quasicrystals—
	stress potential formulation · · · · · · · · · · · · · · · · · · ·
9.6	A straight dislocation in an icosahedral quasicrystal······173
9.7	An elliptic notch/Griffith crack in an icosahedral quasicrystal · · · · · · · 178
9.8	Elasticity of cubic quasicrystals—the anti-plane and axisymmetric
	deformation · · · · · · · · 185

x Contents

Refere	ences · · · · · · · 189
Chapter	Dynamics of elasticity and defects of quasicrystals · · · · · 191
10.1	Elastodynamics of quasicrystals followed the Bak's argument $\cdots\cdots$ 192
10.2	Elastodynamics of anti-plane elasticity for some quasicrystals $\cdots 192$
10.3	Moving screw dislocation in anti-plane elasticity $\cdots\cdots 194$
10.4	Mode III moving Griffith crack in anti-plane elasticity $\cdots \cdots 197$
10.5	Elasto-/hydro-dynamics of quasicrystals and approximate analytic
	solution for moving screw dislocation in anti-plane elasticity $\cdots\cdots 199$
10.6	Elasto-/hydro-dynamics and solutions of two-dimensional decagonal
	${\it quasicrystals} \cdots \cdots 206$
10.7	Elasto-/hydro-dynamics and applications to fracture dynamics of
	icosahedral quasicrystals · · · · · · · · · · · · · · · · · · ·
10.8	Appendix of Chapter 10: The detail of finite difference scheme $\cdots \cdots 221$
Refere	ences · · · · · · · · · · · · · · · · · · ·
Chapter	_
	quasicrystals······229
11.1	Harmonic and quasi-biharmonic equations in anti-plane elasticity of
	one-dimensional quasicrystals $\cdots \cdots 230$
11.2	Biharmonic equations in plane elasticity of point group 12mm two-
	${\it dimensional\ quasicrystals} \cdots \cdots 230$
11.3	The complex variable function method of quadruple harmonic
	equations and applications in two-dimensional quasicrystals $\cdots \cdots 231$
11.4	Complex variable function method for sextuple harmonic equation
	and applications to icosahedral quasicrystals $\cdots \cdots 243$
11.5	Complex analysis and solution of quadruple quasiharmonic
	equation $\cdots 253$
11.6	Conclusion and discussion $\cdots \cdots 254$
	ences · · · · · · · · · 255
Chapter	12 Variational principle of elasticity of quasicrystals,
	numerical analysis and applications · · · · · · · · · 257
12.1	Basic relations of plane elasticity of two-dimensional quasicrystals $\cdots 258$
12.2	Generalized variational principle for static elasticity of quasicrystals $\cdots 259$
12.3	Finite element method · · · · · · · · · · · · · · · · · · ·
12.4	Numerical examples $\cdots 267$
Refere	ences · · · · · · · · · · · · · · · · · · ·
Chapter	- _ -
	of quasicrystals · · · · · · 273
13.1	Uniqueness of solution of elasticity of quasicrystals $\cdots \cdots 273$

Contents xi

13.2	Generalized Lax-Milgram theorem · · · · · · · · · · · · · · · · · · ·	$\cdots 275$
13.3	Matrix expression of elasticity of three-dimensional quasicrystals \cdots	··278
13.4	The weak solution of boundary value problem of elasticity of	
	quasicrystals · · · · · · · · · · · · · · · · · · ·	·· 282
13.5	The uniqueness of weak solution · · · · · · · · · · · · · · · · · · ·	·· 283
13.6	Conclusion and discussion · · · · · · · · · · · · · · · · · · ·	·· 286
Refer	ences·····	·· 286
Chapter	Nonlinear behaviour of quasicrystals	··289
14.1	Macroscopic behaviour of plastic deformation of quasicrystals $\cdots \cdots$	·· 290
14.2	Possible scheme of plastic constitutive equations · · · · · · · · · · · · · · · · · · ·	292
14.3	Nonlinear elasticity and its formulation · · · · · · · · · · · · · · · · · · ·	. 294
14.4	Nonlinear solutions based on simple models · · · · · · · · · · · · · · · · · · ·	295
14.5	Nonlinear analysis based on the generalized Eshelby theory · · · · · ·	. 301
14.6	Nonlinear analysis based on the dislocation model · · · · · · · · · · · · · · · · · · ·	
14.7	Conclusion and discussion · · · · · · · · · · · · · · · · · · ·	
14.8	Appendix of Chapter 14: Some mathematical details · · · · · · · · · · · · · · · · · · ·	309
Refer	ences · · · · · · · · · · · · · · · · · · ·	
Chapter	r 15 Fracture theory of quasicrystals	317
15.1	Linear fracture theory of quasicrystals · · · · · · · · · · · · · · · · · · ·	
15.2	Measurement of $G_{{ m I}C}$	
15.3	Nonlinear fracture mechanics · · · · · · · · · · · · · · · · · · ·	322
15.4	Dynamic fracture·····	323
15.5	Measurement of fracture toughness and relevant mechanical	
	parameters of quasicrystalline material · · · · · · · · · · · · · · · · · · ·	· 325
Refer	ences·····	
Chapter	16 Remarkable conclusion · · · · · · · · · · · · · · · · · · ·	329
	ences·····	
Major A	Appendix: On some mathematical materials · · · · · · · · · · · · · · · · · · ·	. 333
	ndix I Outline of complex variable functions and some additional	
	calculations·····	333
Α	I.1 Complex functions, analytic functions	334
Α	I.2 Cauchy's formula	
A	I.3 Poles · · · · · · · · · · · · · · · · · · ·	
Α	I.4 Residue theorem · · · · · · · · · · · · · · · · · · ·	337
	.I.5 Analytic extension · · · · · · · · · · · · · · · · · · ·	
	I.6 Conformal mapping · · · · · · · · · · · · · · · · · · ·	
	.I.7 Additional derivation of solution (8.2-19) · · · · · · · · · · · · · · · · · · ·	
	I.8. Additional derivation of solution (11.3-53)	

A.I.9	Detail of complex analysis of generalized cohesive force model for plane
	elasticity of two-dimensional point groups 5m, 10mm and 10, $\overline{10}$
	${\it quasicrystals} \cdots \cdots 345$
A.I.10	On the calculation of integral (9.2-14) · · · · · · · · · · · · · · · · · · ·
Appendix	II Dual integral equations and some additional calculations $\cdots 348$
A.II.1	Dual integral equations · · · · · · 348
A.II.2	Additional derivation on the solution of dual integral equations
	$(8.3-8) \cdots 353$
A.II.3	Additional derivation on the solution of dual integral equations
	$(9.8-8) \cdots 355$
References	357
$\mathbf{Index} \cdot \cdots \cdot$	359