Contents

Preface xv

1	Bridged Lactams as Model Systems for Amidic Distortion 1
	Tyler J. Fulton, Yun E. Du, and Brian M. Stoltz
1.1	Introduction and Scope 1
1.2	General Properties of Bridged Lactams 3
1.2.1	Parameters of Amide Bond Distortion 3
1.2.2	Bond Lengths, Bond Angles, and Spectroscopic Properties of Bridged
	Lactams 5
1.2.3	N- vs. O-protonation and Methylation and Structural Effects of
	N-coordination 7
1.2.4	Twisted Amide Basicity and pK _a Measurements 14
1.3	Reactivity of Bridged Lactams 15
1.3.1	Reactivity of the Lactam Nitrogen 15
1.3.1.1	Hydrolysis of the N–C(O) Bond 15
1.3.1.2	Cleavage of the σ C–N Bond 17
1.3.2	Reactivity of the Carbonyl Group 18
1.3.2.1	Heteroatom Nucleophiles 18
1.3.2.2	Organometallics 19
1.3.2.3	Reduction of the Carbonyl 20
1.3.2.4	Olefination and Epoxidation Reactions 20
1.3.2.5	Enolate and Conjugate Addition Chemistry 21
1.3.3	Polymerization Reactions 22
1.3.4	Miscellaneous Reactions 23
1.3.4.1	Ring Opening via Olefin Metathesis 23
1.4	Conclusions and Outlook 24
	References 24

i Content:

vi	Contents	
	2	Modification of Amidic Resonance Through Heteroatom
		Substitution at Nitrogen: Anomeric Amides 29
		Stephen A. Glover and Adam A. Rosser
	2.1	Introduction 29
	2.2	Properties of Anomeric Amides 32
	2.2.1	Structural Properties 32
	2.2.2	Natural Bond Order Analysis 33
	2.2.3	Theoretical Determination of Amide Bond Resonance 35
	2.2.4	Sources of Anomeric Amides 37
	2.2.5	Experimental Evidence for Reduced Resonance in Anomeric Amides 38
	2.2.6	Spectroscopic Properties of Anomeric Amides 43
	2.2.7	Theoretical Structures and Amidicities of Model Anomeric
		Amides 46
	2.3	Reactivity of Anomeric Amides 50
	2.3.1	The Anomeric Effect 50
	2.3.2	Reactivity at the Anomeric Amide Nitrogen 53
	2.3.2.1	S _N 2 Reactions 53
	2.3.2.2	Elimination Reactions (S _N 1-Type Processes) 56
	2.3.3	Amide Bond Scission Reactions: The HERON Reaction 57
	2.3.3.1	HERON Reactions of N-Alkoxy-N-Aminoamides 58
	2.3.3.2	Other HERON Reactions 60
	2.3.3.3	The Role of the $n_Y - \sigma^*_{NX}$ Anomeric Effect and Resonance in HERON
		Reactions 63
	2.4	Concluding Remarks 66
		References 68
	3	Amide Bond Activation by Twisting and Nitrogen
		Pyramidalization 79
		Yuko Otani and Tomohiko Ohwada
	3.1	Introduction 79
	3.2	Nonplanar Amides that Are Sufficiently Stable for Chemical Modification 80
	3.2.1	Nonplanar Amides 80
	3.2.2	Thioamides 83
	3.2.3	Chemical Stability of Nitrogen Pyramidal Amides 83
	3.3	Application to Amino Acids: Artificial Helices Composed of Bicyclic
		Amino Acids 85
	3.3.1	Conformational Preference of Bicyclic β-Amino Acids 85
	3.3.2	Bridgehead-Substituted Bicyclic Amino Acids 88
	3.3.3	Application to Artificial Helices and Strand Mimics 90
	3.3.3.1	Heterooligomers 90
	3.4	Applications of Helical Peptides as Inhibitors of p53-MDM2/MDMX Interaction 92

3.5	Nonplanar Lactam Amide Spinning 93
3.5.1	Lactam Amide Rotation 94
3.6	Conclusion and Prospects 95
5.0	References 96
	References 30
4	Transition-Metal-Free Reactions of Amides by Tetrahedral Intermediates 101
	Marco Blangetti, Karen de la Vega-Hernández, Margherita Miele, and
	Vittorio Pace
4.1	Introduction 101
4.2	Synthesis of Carbonyls from Amides 102
4.2.1	Addition to Canonical Amides 102
4.2.2	Variation of the Amide Structure 107
4.2.3	Isolation of Tetrahedral Intermediates 115
4.2.3	Recent Uses of Amides and N-Alkoxyamides for the Synthesis of
4.3	Amines 119
4.4	Electrophilic Amide Linkage Activation 128
4.4.1	General Concept 128
4.4.2	Synthesis of Carbonyl-Like Compounds 129
4.4.3	Synthesis of Amine-Like Compounds 137
4.4.4	Activation of Amides with Different Electrophilic Agents 144
4.5	Synthesis of Heterocycles 145
4.6	Conclusions and Outlook 150
7.0	References 150
	References 150
5	Electrophilic Amide Bond Functionalization 157
	Carlos R. Gonçalves and Daniel Kaiser
5.1	Introduction: Electrophilic Activation 157
5.2	Introduction: Electrophilic Activation of Amides 158
5.3	Early Endeavors in Electrophilic Amide Activation 159
5.3.1	History of the Activation of Secondary Amides 159
5.3.2	History of the Activation of Tertiary Amides 160
5.4	Amide Bond Functionalization of Activated Tertiary Amides 164
5.4.1	[2+2]-Cycloadditions 164
5.4.2	Stereoselective Cycloadditions 167
5.4.3	Nucleophile Addition 168
5.4.3.1	Carbon Nucleophiles 168
5.4.3.2	Hydridic Reduction 170
5.4.3.3	Heteroatom Nucleophiles 171
5.5	Amide Bond Functionalization of Activated Secondary Amides 175
5.5.1	Synthesis and Functionalization of Heterocycles 176
5.5.2	Ketone Synthesis 179
5.6	Conclusions 180
	References 181

viii	Contents
------	----------

viii	Contents	
'	6	Transamidation of Carboxamides and Amide Derivatives:
		Mechanistic Insights, Concepts, and Reactions 187
		Paola Acosta-Guzmán, John Corredor-Barinas, and Diego Gamba-Sánchez
	6.1	Introduction 187
	6.2	Historical Background 188
	6.3	Direct Transamidation of Carboxamides 190
	6.3.1	Mechanistic Insights 190
	6.3.2	Transition Metal Catalysis 193
	6.3.3	Organocatalysis 195
	6.3.4	Other Catalytic and Promoted Processes 198
	6.3.4.1	Bases 198
	6.3.4.2	Boron Derivatives 199
	6.3.4.3	Heterogeneous Catalysis 200
	6.3.4.4	Other Promoters 201
	6.3.5	Catalyst and Promoter-Free Processes 203
	6.4	Transamidation by the Previous Functionalization of the Amide
		Bond 204
	6.4.1	Transamidation of Activated Substrates Using Metallic Catalysts 205
	6.4.2	Transamidation of Activated Substrates Using Fluoride as an Auxiliary 207
	6.4.3	Transamidation of Activated Substrates Using Other Promoters 208
	6.4.4	Transamidation of Activated Substrates Without Promoters or Catalysts 209
	6.5	Transamidation with Atypical Substrates 211
	6.5.1	Reductive Transamidation 211
	6.5.2	Oxidative Transamidation 212
	6.5.3	Using Carbonyl and Thiocarbonyl Heterocycles as Activators 213
	6.5.4	From Amidines 214
	6.6	Conclusions and Perspectives 215
		References 216
	7	Amide Bond Esterification and Hydrolysis 221
		Kazushi Mashima, Takahiro Hirai, and Haruki Nagae
	7.1	Stoichiometric Reactions 221
	7.2	Catalytic Reactions 228
	7.3	N-β-Hydroxyethyl Amides 232
	7.4	Chelating Auxiliary at the Nitrogen Atom of Amides 234
	7.5	Activated Amides 235 References 237

8	Activation of Amide C-N Bonds by Nickel Catalysis 243
	Liana Hie and Tejas K. Shah
8.1	Introduction 243
8.2	Esterification of Amides 243
8.3	Hydrolysis of Amides 248
8.4	Transamidation 249
8.5	Suzuki-Miyaura Coupling of Amides 255
8.6	Negishi Coupling of Amides 258
8.7	Mizoroki–Heck Coupling of Amides 261
8.8	Reduction and Reductive Coupling of Amides 265
	References 269
9	Pd-NHC Catalysis in Cross-Coupling of Amides 273
	Faez S. Alotaibi, Michael R. Chhoun, and Gregory R. Cook
9.1	Introduction 273
9.2	Pd(II)-NHC-Catalyzed Cross-Coupling Reactions of Amides 274
9.3	Pd(NHC)(Allyl)Cl Precatalyst in Suzuki-Miyaura Cross-Coupling of
	Amides 275
9.4	Pd(η ³ -1-t-Bu-Indenyl)(IPr)Cl-Catalyzed Suzuki–Miyaura Cross-Coupling
	of Amides 279
9.5	Pd-PEPPSSI Precatalyst in the Suzuki-Miyaura Cross-Coupling of
	Amides 281
9.6	Various Pd-NHC Precatalysts Suitable for Cross-Coupling of
	Amides 286
9.7	Conclusion 288
	References 288
40	
10	Cross-Coupling of Amides Through Decarbonylation 293
101	Hong Lu and Hao Wei
10.1	Introduction 293
10.2	Decarbonylation of Cyclic Amide Derivatives 294
10.2.1	Phthalimides 295
10.2.2	Saccharins and Other Cyclic Amide Derivatives 297
10.3	Decarbonylation of Acyclic Amide Derivatives 298
10.3.1	N-Acyl-Glutarimides 298
10.3.2	N-Acylsaccharin Amides 302
10.3.3	Other Acyclic Amides 302
10.4	Conclusion 305

References 305

×	Contents	
	11	Transition Metal-Catalyzed Radical Reactions of Amides 307 <i>Taline Kerackian, Didier Bouyssi, Nuno Monteiro, and</i>
		Abderrahmane Amgoune
	11.1	Introduction 307
	11.2	Reactions Involving Amides as Precursors to Organometallic
		Compounds 308
	11.2.1	Radical Reactions of Amides via Metal-Catalyzed C-N Bond
		Activation 308
	11.2.1.1	Reductive Cross-Electrophile Cross-Coupling Reactions 309
	11.2.1.2	Photoredox Cross-Coupling Reactions 312
	11.2.2	Chelation-Assisted Radical Reactions of Amides 316
	11.2.2.1	Amide-Directed C-H Bond Functionalization 316
	11.2.2.2	Amide-Directed Functionalization of Unactivated Alkenes 318
	11.3	Reactions Involving Amides as Precursors to Nitrogen- or
		Carbon-Centered Radicals 323
	11.3.1	Reactions of Amides via Amidyl Radicals 323
	11.3.1.1	Vicinal Difunctionalization of Pendant Olefins 324
	11.3.1.2	Distant C-H Bond Functionalization 325
	11.3.2	Reactions of Amides via α-Aminoalkyl Radicals 328
	11.3.2.1	C-H Bond Functionalization via Radical Addition
		to Alkenes 328
	11.3.2.2	1 0
	11.3.3	Reactions of Amides via Carbamoyl Radicals 331
	11.4	Conclusion 333
		References 334
	12	Weinreb Amide as a Multifaceted Directing Group in C-H
		Activation 339
		Jayabrata Das and Debabrata Maiti
	12.1	Introduction 339

	Activation 555	
	Jayabrata Das and Debabrata Maiti	
12.1	Introduction 339	
12.2	Weinreb Amide-Directed C(sp ²)-H Activation	340
12.2.1	Ru-Catalyzed Reactions 340	
12.2.2	Co-Catalyzed Reactions 344	
12.2.3	Pd-Catalyzed Reactions 346	
12.2.4	Rh-Catalyzed Reactions 352	
12.2.5	Ir-Catalyzed Reactions 354	
12.3	Weinreb Amide-Directed C(sp³)–H Activation	359
12.4	Conclusions and Outlook 362	

References 362

13	Computational Studies of Amide C-N Bond Activation 365
	Xin Hong, Pei-Pei Xie, Zhi-Xin Qin, and Shuo-Qing Zhang
13.1	Introduction 365
13.2	General Mechanisms of Amide C-N Bond Cleavage and
	Derivatization 367
13.3	Computational Studies on the Mechanism and Selectivity of Lewis
	Acid-Mediated Nucleophilic Substitution of Amides 368
13.3.1	Computational Studies on the Mechanism and Selectivity of
	LiHMDS-Mediated Transamidation 369
13.3.2	Computational Studies on the Mechanism and Reactivity of
	Zn-Catalyzed Esterification of Amides 373
13.3.3	Computational Studies on the Mechanism of Ammonium Salt-Mediated
	Hydrazinolysis of Amides 375
13.3.4	Computational Studies on the Mechanism of Organocatalytic
	Asymmetric Alcoholysis of N-Sulfonyl Amide 378
13.4	Computational Studies on the Mechanism and Selectivity of Transition
	Metal-Catalyzed Cross-coupling of Amides 380
13.4.1	Computational Study on the Mechanism and Reactivity of Ni-Catalyzed
	Esterification of Amides 381
13.4.2	Computational Study on the Mechanism of Ni-Catalyzed
	Suzuki-Miyaura Coupling of Amides 387
13.4.3	Computational Study on the Mechanism and Selectivity of Ni-Catalyzed
	C-N Bond Activation of Twisted Amides 388
13.4.4	Computational Study on the Structure-Activity Relationship of
	Ni-Catalyzed C-N Bond Activation of Amides 391
13.4.5	Computational Study on the Mechanism of Pd-Catalyzed
	Suzuki-Miyaura Coupling of Amides 395
13.4.6	Computational Study on the Mechanism of Pd-Catalyzed
	Transamidation of Amides 398
13.5	Outlook 398
	References 399
14	Esters as Viable Acyl Cross-Coupling Electrophiles 403
	Omid Daneshfar and Stephen G. Newman
14.1	Introduction 403
14.2	Early Work in the Cross-coupling of Carboxylic Acid Derivatives 404
14.3	Decarbonylative Coupling of Aryl Esters 408
14.3.1	Mizoroki–Heck-Type Coupling 408
14.3.2	C–H Biaryl Coupling 409

xii Contents	
---------------------	--

14.3.3	Suzuki–Miyaura Coupling 412
14.3.4	Silylation and Borylation 417
14.3.5	Other C-C/C-H Bond Forming Reactions 419
14.3.5.1	Sonogashira-Type Couplings 419
14.3.5.2	Reduction 421
14.3.5.3	Negishi-Type Coupling 421
14.3.5.4	Cyanation 422
14.3.5.5	Methylation 422
14.3.6	Other C-Heteroatom Bond Forming Reactions 424
14.3.6.1	Etherification 424
14.3.6.2	Amination 424
14.3.6.3	Thioetherification 427
14.3.6.4	Carbon-Phosphorus Bond Formation 428
14.4	Carbonyl Retentive Coupling of Phenyl Esters 429
14.4.1	Suzuki-Miyaura Coupling 429
14.4.2	Amidation 433
14.4.3	Cross-Electrophile Coupling 434
14.4.4	Ester Transfer and Ester Dance 435
14.4.5	Deoxygenative Organophosphorus Coupling 437
14.4.6	Alkyne Insertion 438
14.5	Carbonyl Retentive Coupling of Alkyl Esters 439
14.5.1	Amidation 439
14.5.2	Mizoroki-Heck-Type Domino Reactions 441
14.5.3	Suzuki-Miyaura Coupling 443
14.6	Decarbonylative Couplings of Alkyl Esters 444
14.6.1	Directing Group Assistance 444
14.6.2	Methylation 445
14.6.3	Organostannane Formation 445
14.7	Conclusion and Outlook 446
	References 447
15	Cross-Coupling of Aromatic Esters by Decarbonylation 453
	Kei Muto and Junichiro Yamaguchi
15.1	Introduction 453
15.2	Overview of Decarbonylative Coupling 453
15.3	Decarbonylative Mizoroki–Heck Reaction 457
15.4	Decarbonylative Alkyne Insertions 459
15.5	Suzuki–Miyaura Coupling 460
15.6	Negishi Coupling 463
15.7	Sonogashira Coupling 464
15.8	α-Arylation 465
15.9	Cyanation 465
15.10	C-H Arylation 466
15.11	C-N Bond Formations 470
15.12	C-P Bond Formation 471

15.13	Etherification 4/3	
15.14	Thioetherification 473	
15.15	Hydrogenation 473	
15.16	Borylation, Silylation, and Stannylation	475
15.17	Miscellaneous 478	
15.18	Summary 483	
	References 483	

Index 487