

Contents

Chapter 1

Towards Intelligence-Based Systems Engineering and System of Systems Engineering	1
<i>Andreas Tolk, Kevin MacG. Adams, Charles B. Keating</i>	
1 Introduction	1
2 Intelligence-Based Systems	2
2.1 Characteristics of Intelligence-Based Systems	2
2.2 How to Capture Intelligence	4
3 Systems Engineering	6
3.1 Traditional Systems Engineering	7
3.2 System of Systems	8
3.3 System of Systems Engineering	10
3.4 System of Systems Engineering Methodology	11
3.5 Intelligence-Based Systems Engineering	16
4 Contributions to These Topics within This Volume	18
References	20

Chapter 2

Future Directions for Semantic Systems	23
<i>John F. Sowa</i>	
1 The Knowledge Acquisition Bottleneck	23
2 Natural Language Processing	24
3 Reasoning and Problem Solving	27
4 Semantic Web	30
5 Language Analysis and Reasoning	35
6 Integrating Semantic Systems	43
References	45

Chapter 3

Defining and Validating Semantic Machine to Machine Interoperability	49
<i>Claudia Szabo, Saikou Y. Diallo</i>	
1 Introduction	49
2 State of the Art in Interoperability	50

2.1	Semantics of Data for a Machine	53
2.2	Formal Representation of Data for a Machine	55
2.3	Semantic Machine to Machine Interoperability	58
3	Formal Validation of Interoperable Federations	63
3.1	Knowledge Representation	66
3.2	Formal Validation of Model Execution	68
3.3	Reference Model	68
3.4	Formal Validation Process	69
4	Summary and Recommendations	72
	References	72

Chapter 4

An Approach to Knowledge Integration Applied to a

Configuration Problem

75

Maria Vargas-Vera, Miklos Nagy, Dietmar Jannach

1	Introduction	75
2	Related Work	77
2.1	Expert Systems - Knowledge Bases	77
2.2	Ontologies View	78
2.3	Databases	80
2.4	Knowledge Management	80
3	Scenario	81
3.1	Constraint Satisfaction Problem (CSP)	82
3.2	Case Study: Computer Configuration Problem	83
3.3	Constraint Graph	84
4	Mapping Process	84
5	Knowledge Integration Framework	92
5.1	Algorithms for Detecting and Correcting Overlappings	94
6	Evaluation	97
6.1	Mapping Quality	99
6.2	Configuration Quality	100
7	Conclusions	102
	References	103

Chapter 5

Simulation-Based Systems Design in Multi-actor

Environments

107

Michele Fumarola, Mamadou D. Seck, Alexander Verbraeck

1	Introduction	107
1.1	Outline of the Chapter	108
2	Designing Systems	108
3	Systems Approaches	111
3.1	Systems Simulation in Design	112
3.2	Soft Systems Methodology	113

4	Designing a Multimethodological Approach	118
4.1	Component Based Modeling	118
4.2	Different Levels of Abstraction	119
4.3	Structing Alternatives	121
4.4	Participatory Design	123
5	Conclusion	123
	References	124

Chapter 6

Distributed Simulation Using RESTful Interoperability

Simulation Environment (RISE) Middleware	129
--	-----

Khaldoon Al-Zoubi, Gabriel Wainer

1	Introduction	129
2	Background on Distributed Simulation	132
3	RISE Middleware API	136
4	RISE-based Distributed CD++ Simulation Algorithms	137
4.1	Distributed CD++ (DCD++) Architecture	139
4.2	DCD++ Simulation Synchronization Algorithms	143
5	Distributed Simulation Interoperability Standards	148
	References	155

Chapter 7

Agile Net-Centric Systems Using DEVS Unified Process

159

Saurabh Mittal

1	Introduction	160
2	Related Technologies	162
3	DEVS Unified Process with DEVS/SOA	163
3.1	Discrete Event Systems Specification	163
3.2	Web Services and Interoperability Using XML	165
3.3	An Abstract DEVS Service Agent	166
3.4	DEVS/SOA Framework for Net-Centric Modeling and Simulation	166
3.5	DEVS Unified Process a.k.a DUNIP	169
4	Multi-layered Agent-Based Test Instrumentation System Using GIG/SOA	171
4.1	Deploying Test Agents over the GIG/SOA	172
4.2	Implementation of Test Federations	173
5	Abstract DEVS Service Wrapper	174
6	Workflow Composition and DoDAF-Based Mission Threads	175
6.1	Web Service Work Flow Formalism	177
6.2	Mapping of DEVS, BPEL and DoDAF Artifacts with WSWF Formalism	180
7	Case Study	182

7.1	DEVS Wrapper Agent	182
7.2	Workflow Design, Analysis and Execution	185
8	Agility in DEVS Unified Process	191
9	Conclusions and Future Work	193
10	Acronyms	196
	References	197

Chapter 8

Systems Engineering and Conversational Agents	201
--	-----

James O'Shea, Zuhair Bandar, Keeley Crockett

1	Introduction	201
2	The Scope of CAs	202
2.1	Spoken Dialogue Systems.....	202
2.2	Chatterbots	203
2.3	Natural Language Processing Based Dialogue Management Systems	203
2.4	Goal-Oriented CAs	204
2.5	Embodied CAs.....	206
3	Practical Applications of CAs	207
3.1	CAs for Selling.....	207
3.2	A GO-CA Student Debt Advisor	210
4	Design Methodology for GO-CAs	212
4.1	Knowledge Engineering	212
4.2	Implementation	213
4.3	Scripting Language	214
4.4	Evaluation	217
4.5	Maintenance	219
5	Novel Algorithms – Short Text Semantic Similarity	221
5.1	The STASIS Algorithm	222
5.2	Latent Semantic Analysis.....	224
6	Research Opportunities	225
7	Conclusions	226
	References	227

Chapter 9

Advanced Concepts and Generative Simulation Formalisms for Creative Discovery Systems Engineering	233
--	-----

Levent Yilmaz, C. Anthony Hunt

1	Introduction	233
1.1	Motivation	236
1.2	Scientific Problem Solving with Computational Models	236
2	Models and Principles of Creative Problem Solving	239
2.1	Background	239
2.2	Models of Creative Cognition	240

3	Generative Parallax Simulation: Basic Concepts	242
3.1	An Abstract Model of Creative Cognition	242
3.2	Abstract Specification of the Structure and Dynamics of GPS	243
3.3	Implications of the Ecological Perspective	246
4	Meta-simulation of GPS	246
4.1	Conceptual Model for GPS Simulator	246
4.2	Meta-simulation Parameters	249
4.3	Qualitative Analysis of Results and Discussion	249
5	Discussion and Future Work	255
5.1	Improving Autonomy in Schema Evolution and Diffusion	255
5.2	Toward Adaptive Growth of Analogue Ensembles for Creative Discovery Systems	256
5.3	Strategic and Context Sensitive Exploration	256
6	Conclusions	257
	References	257

Chapter 10

Establishing a Theoretical Baseline: Using Agent-Based Modeling to Create Knowledge	259	
<i>Jose J. Padilla, Saikou Y. Diallo, Andres A. Sousa-Poza</i>		
1	Introduction	259
2	Systems Engineering and Its Challenges	260
3	Theory and Theory Creation	263
4	Building Theory through M&S	266
4.1	Existing M&S Methodologies/Methods for Theory Building	270
4.2	A Methodology for Theory Building Using M&S	274
4.3	Selecting the Modeling Paradigm	275
5	Test Case: Building a Theory of Understanding Using Agents	276
5.1	Brief on ABM and Its Relevance on Theory Building	276
5.2	Importance of Understanding to Problem Situations	277
5.3	Implementing the Methodology for Theory Building Using M&S	277
6	Final Remarks and Conclusion	281
7	List of Acronyms	282
	References	282

Chapter 11

“The User Around the Marketplace”: Automatic Engineering of Interactive E-commerce Applications	285
<i>Martín López-Nores, Yolanda Blanco-Fernández, José J. Pazos-Arias</i>	
1 Introduction	285
2 Background	287
3 Elements to Engineer Personalized Interactive Applications	290
4 The Personalization Procedures	293
4.1 Reasoning-Driven Recommendation of Items	293
4.2 Composition of Interactive Commercial Applications	295
4.3 Feedback	296
5 Our Proposal in DTV Advertising	297
5.1 A Simple Example	298
5.2 Experimental Evaluation	300
6 Conclusion	303
References	303

Chapter 12

Wireless Sensor Network Anomalies: Diagnosis and Detection Strategies	309
<i>Raja Jurdak, X. Rosalind Wang, Oliver Obst, and Philip Valencia</i>	
1 Introduction	309
2 Types of WSN Anomalies	310
2.1 Network Anomalies	313
2.2 Node Anomalies	315
2.3 Data Anomalies	316
2.4 Other Anomalies	318
3 Anomaly Detection Strategies	318
3.1 Architecture	320
3.2 Usability	321
4 Design Guidelines and Conclusions	323
References	324

Chapter 13

Enterprise Ontologies – Better Models of Business	327
<i>Ian Bailey</i>	
1 Introduction – Intelligence-Led Systems Engineering	327
1.1 Introduction – Business Ontologies	329
1.2 Information System Requirements Gathering	329
1.3 Driving-Out Complexity	331
1.4 Stovepipes	331
2 What Is Needed for Better Information Systems?	332

2.1	Better Analysis – Getting Your Hands Dirty	333
2.2	Flexibility – Using the Full Range of Logic	334
2.3	Consistency – Sophisticated, Repeatable Analysis ..	335
2.4	Implementation – New Ways of Storing	335
3	A New Approach to Information Systems Development	336
3.1	Introducing the BORO Method	336
3.2	Managing Time	337
4	Addressing Arguments against Ontology	340
5	Conclusions	341
5.1	Literature Search	341
	References	341
	Author Index	343