Contents

Int	roduc	ction	. 1		
1.	Excitation of Microseisms and Infrasound Vibrations				
	1.1	Formation of Microseisms from Sea Waves	. 5		
		1.1.1 Hydrodynamics	. 5		
		1.1.2 Pressure at the Bottom in the Case of Running Waves			
		1.1.3 Pressure at the Bottom in the Case			
		of Standing Waves	. 8		
	1.2	SMS Excitation			
		1.2.1 Coherent Model			
		1.2.2 Noncoherent Model			
	1.3	Comparison of Existing Theories of SMS Excitation	. 13		
	1.4	Theories of SMS and Infrasound Generation			
		by Standing Sea Waves			
		1.4.1 Theory of Miche and Longuet-Higgins			
		1.4.2 Hieblot and Rocard Theory on the Origin of SMS	. 16		
		1.4.3 Theory of Infrasound Radiation			
		by Standing Sea Waves			
	1.5	Hasselman Theory			
	1.6	Nanda Theory of SMS Generation			
	1.7	Primary and Secondary Shore Microseisms	. 24		
2.	Sour	ources of Excitation of SMS and IS			
	2.1	Observations on the Caspian Sea.			
		Establishment of Fundamental Relations			
	2.2	Observations of SMS on Lake Baikal			
	2.3	Microseismic Storms on the Okhotsky Sea	. 38		
	2.4	Observations of Hydrometeorological Conditions and SMS			
		on Oceans. Recording of Alternating Pressures			
		on the Ocean Bottom	. 39		
	2.5	Recording Infrasound Vibrations in the Atmosphere			
		and Microseisms	. 42		
	2.6	Observations on SMS in the Shore Zone			
		and on the Ocean Bottom			
	2.7	Experimental Confirmation of the Theory of Standing Waves			
		MS and Infrasound	. 44		

3.			ion of MS Noise into Discrete Sources			
		IS Excit	ation	45		
	3.1		ation of MS Noise According to Frequency Synchronism	4.		
		3.1.1	Examples	47		
	3.2		Spectra	49		
	3.3	Separation of Seismic "Noise" into Components				
		Arrivi	ng from Different Sources	52		
		3.3.1	Measurements	54		
4.	Dete	rminati	on of Power, Energy and Positions of Sources			
	of M	IS Excit	ation	59		
	4.1	Source	Position	59		
		4.1.1	The Amplitude Field	59		
		4.1.2	Amplitude Centroid Method	62		
	4.2	Source	Power and Energy	65		
		4.2.1	Typical Source Strengths (Hydrodynamic Model)	66		
		4.2.2	Seismic Station Measurements			
		.,	of MS Excitation Sources	67		
		4.2.3	Calibration Curves	70		
		4.2.4	Estimates of the Power in Actual Cases	72		
		4.2.5	Comparison of MS Energy with Cyclone Energy	73		
		4.2.6	Method of Centroids in MS Source Position	, ,		
			and Power Determination. An Example	74		
	4.3	Detern	nination of Position and Power of MS Sources	•		
			the Power Constant	77		
		4.3.1	Graphical Method	77		
		4.3.2	Cayley's Determinant	79		
		4.3.3	Method of Power Discrepancy	81		
		4.3.4	MS Sources in the Northern Atlantic	0.		
			and Northwestern Pacific	84		
	4.4	Shape	and Size of MS Sources	87		
5.	MC	ac an In	dicator of Storm Phenomena, Water Wave Regimes,			
٥.	Infr	as an m	Waves and Geometric Excitations	93		
	5.1	Dheno	mena Which Arise with SMS	93		
	5.2		tion of Standing Sea Waves and SMS	94		
	5.3	Influence of the Velocity of a Cyclone Center on MS Formation				
	5.4	Directionality of SMS and IS Radiation				
	3.4			100		
	<i>5 5</i>		Array of Standing Sea Waves	100		
	5.5		ty of a Cyclone Center, SMS and Magnetic Storms	106		
	5.6		bations in the Ionosphere and Fluctuations			
	<i>5</i> 7	or the	Geomagnetic Field	111		
	5.7		agnetic Storms, Telluric Currents,			
			agnetic Micropulsations and SMS	113		
		7/1	Geomagnetic Storms and MS	117		

		Contents	ıx	
		5.7.2 SMS, Geomagnetic Micropulsations		
		and Telluric Currents	116	
	5.8	Variations of Global MS Vibrations		
	5.9	Propagation of Radiowaves and MS Storms on Oceans	121	
6.	MS	S Vibrations in Engineering Seismology		
	6.1	Use of MS in Estimating the Seismic Response of Soils.		
		Electrodynamic Analogy	127	
	6.2	High Frequency MS	131	
		6.2.1 Spontaneous MS	131	
		6.2.2 Mechanical Vibrators	133	
	6.3	Low Frequency MS	135	
	6.4	Further Possible Applications of MS	138	
Ref	ferenc	es	141	
Subject Index				