Contents

1	Smart Structure Systems							
	1.1							
	1.2							
	1.3	Smart Material Transducer Considerations						
	1.4	4 Continuum Representation of Smart Structures						
	1.5	Time Domain Representation of Smart Structure Models	15					
	1.6	Organization of the Book	18					
	Prob	Problems						
2	Spa	tial Shading of Distributed Transducers	25					
	2.1	Introduction	25					
	2.2	Spatial Shading of Distributed Transducers	26					
		2.2.1 Design by Example: A Center of Pressure Sensor	26					
		2.2.2 Approximating Shaded Apertures	29					
	2.3	Analytical Modeling of Spatial Shading Functions						
		for Distributed Transducers	34					
		2.3.1 A Compact Analytical Representation of						
		Distributed Transducers	35					
		2.3.2 Two Dimensional Representation of Distributed						
		Transducers with Nearly Arbitrary Spatial Shading	45					
	2.4	Application to Two-Dimensional Shading Using Skew Angle	51					
		2.4.1 Applications Including Finite Skew Angle of						
		Material Axes	55					
	2.5	Summary	60					
	Prob	lems	61					
3	Acti	ve Vibration Control with Spatially Shaded Distributed						
	Trai	Transducers						
	3.1	Introduction	69					
	3.2	Control System Synthesis Based on the Lyapunov Direct Method.	70					
	3.3	Control System Synthesis for Beams	71					
		3.3.1 Collocated Distributed Transducers and Lyapunov Control	74					
		3.3.2 Performance Limitations of Control Designs with						
		Shaded Distributions	76					

digitalisiert durch DEUTSCHE NATIONAL BIBLIOTHEK

xiv Contents

		3.3.3	Performance Limitations of Uniformly Shaded Transducers	76					
		3.3.4	Performance Limitations of Linearly Shaded Transducers .	80					
		3.3.5	Design Guidelines on Spatial Shading for Vibration Control	81					
	3.4	Control System Synthesis for Plates							
		3.4.1	Performance Limitations of Uniformly Shaded						
			Actuators for Plates	86					
		3.4.2	Performance Limitations of Non-uniformly Shaded						
			Actuators for Plates	92					
		3.4.3	The Unique Compatibility of Distributed						
			Transducers for Arbitrary Spatial Shadings	94					
	3.5	Summ	nary	95					
	Note	es		95					
	Prob	olems		96					
4	Multi-Dimensional Transforms and MIMO Representations								
•		of Smart Structures							
	4.1		uction	101					
	4.2		olution and the Spatially Distributed Plant	105					
		4.2.1	Green's Function Representations for Temporally						
			Stationary Systems	107					
	4.3	Multi-	Input Multi-Output (MIMO) Representations						
			art Structures	113					
	Prot			119					
5	Performance Measures for Smart Structures with MIMO								
			ations	121					
	5.1		uction	121					
	5.2		mance Metrics	121					
	5.3	Asses	sment of Performance Metrics Using Singular Values	124					
	J	5.3.1	Command Following	124					
		5.3.2	Disturbance Rejection	127					
		5.3.3	Sensor Noise	128					
	5.4	Metric	es for Controllability and Observability	128					
		5.4.1	Controllability	129					
		5.4.2	Observability	130					
	5.5	Exam	ple: Active Damping of a Simply Supported Beam	130					
		5.5.1	Spatially Uniform Actuator Distributions	131					
		5.5.2	Linear or "Ramp" Actuator Distributions	133					
	5.6	Metrics for Achieving Stability and Robustness for Control							
			art Structures	137					
		5.6.1	Additive Error Uncertainty	139					
		5.6.2	Multiplicative Error Uncertainty	141					
	5.7	Summ	pary	142					
	Note		· · · · · · · · · · · · · · · · · · ·	142					
	Prob			143					

Contents xv

6	Shape Control: Distributed Transducer Design					
	6.1	Introd	uction	145		
	6.2	Shape	Control and the Notion of Discrete Spatial Bandwidth	146		
		6.2.1	Orthonormal Expansions and the Discrete Spatial Transform	147		
		6.2.2	Minimization of the Integrated Mean Square Profile Error.	149		
	6.3	Plant I	Representations in Terms of an Expansion Basis Set	151		
		6.3.1	The Generic Green's Function Representation	151		
		6.3.2	The Symmetric Green's Function Representation	153		
	6.4	Input/	Output Coupling and Transducer Shading	155		
		6.4.1	The Singular Value Decomposition and			
			Performance Metrics for Shape Control	156		
	6.5	Spatia	lly Distributed Sensors and Shape Estimation	162		
	6.6	-	nary	166		
7	Shape Control, Modal Representations and Truncated Plants					
	7.1	•		167		
	7.2		Error and Feed Forward Correction	167		
	7.3		nplete Dynamic Shape Control Case Study	173		
	,	7.3.1	Case Background	173		
		7.3.2	Airfoil Shapes and the Discrete Spectrum Parameterization	174		
		7.3.3	The Concept of Eigenfoils	176		
		7.3.4	Morphing Airfoil Design Considerations	178		
		7.3.5	Actuator Placement and Input/Output Coupling	179		
		7.3.6	Morphing Airfoil Rib: Discrete Parameterization	1//		
		7.5.0	and the System Model	182		
		7.3.7	State Space Canonical Form	183		
		7.3.7	Morphing Airfoil Closed Loop Shape Controller Synthesis	184		
			• •	191		
	7.4	7.3.9	Morphing Airfoil Closed Loop Shape Control Simulation .	191		
	7.4		ary			
	Prot	olems		196		
Re	feren	ices .		199		
In	dev			203		