Contents

1	Intro	duction	1
	1.1	Initial situation	4
	1.2	Objective and Research Questions	5
2	Findings from Traffic Accident Analysis		
	2.1	Motivation	8
	2.2	Categorizing the Levels of Driving Automation	9
	2.3	Accident Data to Demonstrate Potential Safety Benefits	
		and Risks	11
	2.4	Federal Road Traffic Accident Statistics in Germany	15
	2.5	German In-Depth Accident Study (GIDAS)	15
	2.6	Road Traffic Accident Statistics in the USA	16
	2.7	International Road Accident Data Collections	16
	2.8	Accident Data Collections of Automobile Manufacturers	17
	2.9	Accident Data of the German Insurance Association	18
	2.10	Accident Data Collections of Consumer Associations	
		(ADAC)	18
	2.11	The Fundamentals of Accident Data Analysis	19
		2.11.1 Level of Data Collection versus Number of Cases	19
		2.11.2 The Validity of Areas of Action Compared	
		to Areas of Efficiency	20
		2.11.3 Potential Safety Benefits Depending	
		on Automation Levels and Degree of Efficiency	20
	2.12	Significance of Possible Predictions Based on Accident	
		Data	22

xxviii Contents

		2.12.1	A Posteriori Analyses of Accident Data for "Driver Only"/"No Automation"	22	
		2.12.2	A Priori Predictions for Assisted and Partially		
			Automated Driving	24	
		2.12.3	Potential Safety Benefits and Test Scenarios		
			for Development of Highly and Fully Automated		
			Driving	29	
	2.13		al Safety Benefits / Risks and Impacts on Testing	34	
		2.13.1	Human Error versus Technical Failure in Full		
			Automation	34	
		2.13.2	Potential Safety Benefits - Human and Machine		
			Performance	35	
		2.13.3	Artificial Intelligence versus Human Perception		
			Limits and Consequence	36	
		2.13.4	Human Error versus Artificial Intelligence		
			Incertitudes	36	
		2.13.5	Potential Safety Benefits of Fully Automated		
			Vehicles in Inevitable Incidents	40	
	2.14	Conclu	sion and Outlook	40	
3	Anal	ysis of P	oor Visibility Real-World Test Scenarios	45	
	3.1		tion	4€	
	3.2	Safe D	evelopment, Validation and Testing	48	
		3.2.1	Return of Feedback from Lifecycle of Automated		
			Vehicles	48	
		3.2.2	Requirements for Automated Driving to Minimize		
			Risk	49	
	3.3	Real-World Scenarios for Development and Testing			
		3.3.1	Machine versus Human Perception Limits		
			with Consequences for Testing	53	
		3.3.2	Relevant Real-World Scenarios for Development		
			and Testing	55	
		3.3.3	Integration of Relevant Test Scenarios for Safe		
			Automated Vehicles	63	
		3.3.4	Test Scenarios and Requirements in Relation		
			to Legal and Ethical Aspects	64	
	3.1	a 1	sion and Outlook	65	

Contents xxix

1	Techi		gal, and Economic Risks	67
	4.1	Introdu	ction Development	67 67
	4.2	Motivation		
	4.3	Questio	ons of Increased Automation's Product Safety	69
	4.4	Continu	ued Technical Development of Assistance	
		System	s – New Opportunities and Risks	70
	4.5	Expect	ations Regarding Safety of Complex Vehicle	
		Techno	ology	71
		4.5.1	Steadily Rising Consumer Expectations	
			for Vehicle Safety	71
		4.5.2	Current Safety Expectations of Potential Users	72
		4.5.3	Considerations of Risks and Benefits	73
	4.6	Legal I	Requirements and Effects	74
		4.6.1	Generally Accepted Rules of Technology	76
		4.6.2	The Product Safety Law (ProdSG)	76
		4.6.3	The Product Liability Law (ProdHaftG)	77
		4.6.4	Ethics, Court Judgments to Operational Risk	
			and Avoidability	79
	4.7	Produc	et Safety Enhancement in Automated Vehicles	
		Based	on Expert Knowledge from Liability and Warranty	
		Claims		81
		4.7.1	Experience from Product Crises and Traffic	
			Accidents	81
		4.7.2	Potential Hazard Situations at the Beginning	
			of Development	94
		4.7.3	Methods for Assessing Risks during Development	95
		4.7.4	Approval Criteria from Expert Knowledge	110
		4.7.5	Steps to Increase Product Safety of Automated	
			Vehicles in the General Development Process	111
		4.7.6	Product Monitoring After Market Launch	115
		4.7.7	Steps for Internationally Agreed Best Practices	115
	4.8	Conclu	usion and Outlook:	119
5	Qualitative Interviews with Developers			125
	5.1		nse from a Guided Development Process	126
	5.2		eers: Sensible Creativity under Time Pressure	131
	5.3	Psycho	ologist within Development: Priority to Driver's	
		Needs		132
	5.4	Execut	tives Focus on Responsibility for Duty of Care	134

xxx Contents

	5.5	Advantages of Guideline-Based Development	136
	5.6	Conclusion: Structured Expert Communication Improves	
		Quality	137
6	Consulting Concept to Develop New Systems		
	6.1	Intrinsic Motivation	139
	6.2	Consulting Questions to Fulfill Duty of Care	141
	6.3	Conclusion: Structured Guidelines Support a Safe System	143
7	Summary and Discussion		
	7.1	Current agile management changes	145
	7.2	Findings	146
	7.3	Integration of findings	150
Δr	nev A	A: Change in Jurisdiction on the Responsibility	
		for Pedestrian Accidents	155
Ar	nex E	3: Summarized Questions for Developers	159
Ar	nex (C: Questionnaire for Qualitative Interviews with Developers	179
Αċ	lditio	nal Figures	191
Gl	ossary	y	211
Re	feren	ces: Collaborations out of research groups	231
Re	feren	ces of the author	233
Li	st of F	References	235