Contents

1	Iı	Introduction				
2	Т	The matrix completion problem				
	2.1	F	rundamentals	5		
	2	.1.1	Definition	5		
	2	.1.2	Fields of application	6		
	2.2	N	Matrix completion methods (MCMs)	7		
	2	.2.1	Low-rank matrix completion	7		
	2	.2.2	MCM based on iterative principal component analysis (PCA)	9		
	2	.2.3	Bayesian MCM	12		
3	II	llustr	ation of characteristics of a low-rank MCM using synthetic test matrices	15		
	3.1	I	ntroduction	15		
	3.2	(Generation of test matrices	16		
	3	.2.1	Complete matrices	16		
	3	.2.2	Incomplete training matrices	18		
	3.3	F	Results and discussion	18		
	3	.3.1	Low-rank assumption	19		
	3	.3.2	Noise suppression	20		
	3	.3.3	Influence of the number of observed entries	23		
	3.4	(Conclusions	24		
4	P	redic	ction of limiting activity coefficients at 298.15 K	27		
	4.1		ntroduction			
	4.2		Experimental data basis			
	4.3	P	redictions obtained by matrix completion			
	4	.3.1	Results from the Bayesian MCM			
	4	.3.2	Results from the MCM based on iterative PCA	. 32		
	4	.3.3	Comparison of both MCMs	. 33		

	4.4	Comparison with modified UNIFAC (Dortmund)35					
	4.5	Conclusions					
5	Prec	liction of limiting activity coefficients for varying temperature41					
	5.1	Introduction					
	5.2	Experimental data basis					
	5.3	Matrix completion for isothermal data at varying temperature					
	5.3.	Results for the largest dataset at 303.15 K					
	5.3.	2 Comparison of the results for different temperatures					
	5.4	Introduction of temperature dependency using physical knowledge50					
	5.4.	Description of the approach					
	5.4.	2 Training dataset					
	5.4.	B Evaluation procedure					
	5.4.	Results of the matrix completion approach					
	5.4.	5 Comparison with modified UNIFAC (Dortmund)					
	5.5	Conclusions					
6	Con	clusions61					
L	Literature						
A	Appendix						
A	Imp	Implementation of the Stan model					
В	Add	Additional results					
B.1 Isothermal datasets							
	B.2	Temperature dependent dataset					
C	Alte	rnative approach for the temperature dependency90					