Contents

EΩ	TOM	nrd	 VI

Author's premises ---- IX

Introduction — 1

1	2D topological insulators and quantum spin Hall states: what are they and which are the potential applications for the real world? —— 3
1.1	Introduction — 3
1.2	But indeed, in simple terms, what is a topological insulator (using quantum mechanics)? —— 5
1.3	How to move from the quantum Hall effect to the quantum spin Hall effect? (Intuitive explanation without mathematical developments) —— 6
1.4	Topological matter and topological invariant —— 8
1.4.1	What is the Chern number? —— 8
1.4.2	Z_2 invariant —— 13
1.5	The ideal case of graphene, which is not properly a topological insulator —— 15
1.6	Stanene: the real wonderful material for beyond CMOS —— 18
1.7	Topological insulators and thermoelectric effect: the game changer? —— 21
1.8	Theoretical parameters influencing thermoelectric effect in topological insulators —— 23
1.9	Conclusions — 28
	References —— 29
2	Magic angle: twisting graphene layers to create superconductors —— 33
2.1	Introduction —— 33
2.2	A brief history of superconductivity —— 34
2.3	The discovery of the magic angle: the prediction —— 37
2.4	The experimental results and evidence of unconventional superconductivity —— 41
2.5	What happens if we pile up three layers? —— 48
2.6	Conclusions and perspectives —— 51 References —— 52

3	Valleytronics and a new way to encode information using 2D
	materials —— 55
3.1	Valleytronics: basic science behind and interest —— 55
3.2	Which materials for valleytronics? —— 56
3.3	Optical stimulus: the right way to encode valley pseudo-
	spin? — 59
3.4	Potential implementation of valleytronics: what are the main
	challenges? —— 63
3.5	Some examples of applications and perspectives — 66
	References —— 67
4	2D black phosphorus: difficult to handle but so interesting
	for opto-electronics —— 71
4.1	Introduction —— 71
4.2	Different allotropic forms and structures of phosphorus —— 72
4.3	Why BP is so interesting? Tailoring the band gap through
	thickness — 74
4.4	Passivation — 78
4.4.1	Encapsulation —— 79
4.4.2	Functionalization —— 80
4.4.3	Liquid-phase surface passivation —— 85
4.4.4	Doping —— 86
4.5	Some examples of potential applications — 88
4.5.1	Few layer BP in field-effect transistors —— 88
4.5.1.1	Introduction —— 88
4.5.1.2	Examples of BP-based transistors: some pioneering works —— 89
4.5.2	Energy storage applications —— 92
4.5.2.1	Solar cells — 92
4.5.3	Energy storage applications —— 95
4.5.3.1	Batteries (lithium ion) —— 95
4.5.3.2	Supercapacitors —— 96
4.6	Conclusions — 96
	References —— 99
5	Straintronics: a new way to engineer the physical intrinsic properties
	of 2D materials and van der Waals structures —— 105
5.1	Introduction —— 105
5.2	What type of strain and what are the main effects? —— 107
5.3	In-plane strain: some examples in different fields —— 108
5 /1	Out-of-plane strain —— 118

5.5	Heterostrain —— 122
5.6	Conclusions and perspectives — 124
	References —— 125
6	Exotic properties of 2D materials: where are we? The compromise
	between beyond CMOS and more-than-Moore vision and
	roadmaps —— 129
6.1	Premises to conclusion and to overall analysis —— 129
6.2	Short introduction on the meaning of "Moore's law", "more-than
	Moore" and "beyond CMOS" vision —— 129
6.3	Some considerations —— 131
6.4	Roadmaps —— 134
6.5	Topological insulators and thermoelectric — 134
6.6	Magic angle and superconductivity —— 136
6.7	Valleytronics and information storage —— 136
6.8	Black phosphorus and optoelectronics —— 137
6.9	Straintronics and different potential implementations —— 138
6.10	Classification of the potential innovations — 139
	References —— 141

Index —— 143