Table of Contents

Hardness Amplification	
Input Locality and Hardness Amplification	1
General Hardness Amplification of Predicates and Puzzles Thomas Holenstein and Grant Schoenebeck	19
Security Amplification for the Cascade of Arbitrarily Weak PRPs: Tight Bounds via the Interactive Hardcore Lemma	37
Invited Talk 1	
Dense Model Theorems and Their Applications	55
Leakage Resilience	
Parallel Repetition for Leakage Resilience Amplification Revisited Abhishek Jain and Krzysztof Pietrzak	58
Achieving Leakage Resilience through Dual System Encryption	70
Signatures Resilient to Continual Leakage on Memory and Computation Tal Malkin, Isamu Teranishi, Yevgeniy Vahlis, and Moti Yung	89
After-the-Fact Leakage in Public-Key Encryption	107
Tamper Resilience	
One-Time Computable Self-erasing Functions	125
Perfectly Secure Oblivious RAM without Random Oracles	144
Unconditional and Composable Security Using a Single Stateful Tamper-Proof Hardware Token	164

Correlated-Input Secure Hash Functions			
Encryption			
Black-Box Circular-Secure Encryption beyond Affine Functions Zvika Brakerski, Shafi Goldwasser, and Yael Tauman Kalai	201		
Homomorphic Encryption: From Private-Key to Public-Key	219		
Identity-Based Encryption Secure against Selective Opening Attack Mihir Bellare, Brent Waters, and Scott Yilek	235		
Functional Encryption: Definitions and Challenges	253		
Composable Security			
Concurrent Non-Malleable Zero Knowledge with Adaptive Inputs	274		
Round-Optimal Password-Based Authenticated Key Exchange Jonathan Katz and Vinod Vaikuntanathan	293		
Bringing People of Different Beliefs Together to Do UC	311		
Secure Computation			
Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer	329		
Practical Adaptive Oblivious Transfer from Simple Assumptions Matthew Green and Susan Hohenberger	347		
Completeness Theorems with Constructive Proofs for Finite Deterministic 2-Party Functions	364		
A Zero-One Law for Secure Multi-party Computation with Ternary Outputs	382		

\mathbf{T}			
Р	rı	ıva	cv
_			\sim_J

PCPs and the Hardness of Generating Private Synthetic Data Jonathan Ullman and Salil Vadhan	400
Limits of Computational Differential Privacy in the Client/Server Setting	417
Towards Privacy for Social Networks: A Zero-Knowledge Based Definition of Privacy	432
Coin Tossing and Pseudorandomness	
On the Black-Box Complexity of Optimally-Fair Coin Tossing Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin	450
Tight Bounds for Classical and Quantum Coin Flipping Esther Hänggi and Jürg Wullschleger	468
Exploring the Limits of Common Coins Using Frontier Analysis of Protocols	486
Limits on the Stretch of Non-adaptive Constructions of Pseudo-Random Generators	504
On the Complexity of Non-adaptively Increasing the Stretch of Pseudorandom Generators	522
Invited Talk 2	
Concurrent Security and Non-malleability (Abstract)	540
Black-Box Constructions and Separations	
(Nearly) Round-Optimal Black-Box Constructions of Commitments Secure against Selective Opening Attacks	541

XII Table of Contents

Limits on the Power of Zero-Knowledge Proofs in Cryptographic			
Constructions			
Zvika Brakerski, Jonathan Katz, Gil Segev, and			
Arkady Yerukhimovich			
Towards Non-black-Box Lower Bounds in Cryptography	579		
Rafael Pass, Wei-Lung Dustin Tseng, and			
Muthuramakrishnan Venkitasubramaniam			
Black-Box Separations			
On Black-Box Separations among Injective One-Way Functions	597		
Takahiro Matsuda and Kanta Matsuura			
Impossibility of Blind Signatures from One-Way Permutations	615		
Jonathan Katz, Dominique Schröder, and Arkady Yerukhimovich	010		
Author Index	631		