Contents

Abstract — V
Preface —— VII
About the author —— XI

0 Preamble: Introduction — 1

Introduction to the Thermal-Stimulated Depolarization (TSD) and the Thermal-Windowing Deconvolution (TWD) characterization techniques —— 1

Part I: A Dual and Cross-Dual interpretation of interactive coupling of conformers applied to Thermal-Stimulated Depolarization (TSD) and Thermal-Windowing Deconvolution (TWD)

1 Principle of Thermal-Stimulated Depolarization & Thermal-Windowing Deconvolution —— 15

1.1.1	The different types of polarization —— 15
1.1.1.1	Deformation polarization —— 17
1.1.1.2	Dipolar orientation polarization —— 18
1.1.2	Thermal-Stimulated Polarization and Depolarization —— 19
l.1.3	Model calculation of the thermal-windowing steps —— 20
1.1.3.1	General polarization equation —— 21
1.1.3.2	Polarization stage —— 22
1.1.3.3	Equations of depolarization —— 23
1.1.3.4	Expression of the thermally stimulated current of depolarization —— 24
1.1.3.5	Single Debye relaxation —— 25
1.1.3.6	Distributed Debye processes —— 25
1.1.4	Computer simulation —— 26
1.1.5	Influence of ΔH and $ au_o$ on a Debye relaxation peak —— 29
1.1.6	Debye curve-fits —— 33
1.1.6.1	The Bucci-Fieschi-Guidi integral solution — 34
I.1.6.2	The Lacabanne (2/3) rule —— 35
I.1.6.3	Simplex curve-fitting methods —— 41
1.1.6.4	Curve-fitting methods based on peak half-width —— 42

l.1.7	Deconvolution of thermally windowed peaks —— 44
l.1.8	Properties of Debye peaks. Influence of peak shifting on $ au_o$
	and Δ <i>H</i> — 46
1.1.9	Influence of the thermal-windowing experimental parameters on the
	characteristics of the depolarization peak —— 56
1.1.9.1	Polarization voltage —— 56
1.1.9.2	Effect of polarization time t_p —— 58
1.1.9.3	Effect of the time of depolarization t_d — 59
1.1.9.4	Effects of the polarization temperature T_p and the window width —— 61
l.1.10	Acknowledgment —— 64
2 Th	ermal-Windowing Deconvolution, relaxation map analysis, and
co	mpensation phenomena to determine the amorphous state of
po	olymers —— 65
1.2.1	Introduction —— 65
1.2.2	Arrhenius transform. Relaxation map. Thermal-Windowing
	Deconvolution —— 66
1.2.3	Eyring transform. Thermokinetic functions —— 69
1.2.4	Compensation phenomena. Degree of disorder —— 72
1.2.5	Compensation search. Z-structure. Z-line —— 73
1.2.6	Determination of T_g . Activation entropy and enthalpy at T_g —— 80
1.2.7	DOD number —— 80
1.2.8	Duality at T_g —— 83
1.2.9	Compensation in the sub-EE plane —— 85
I.2.10	Normalization of the $\Delta G - T$ curves. Discussion — 92
1.2.10.1	Expression of the entropy ΔS_p vs. T_p — 94
1.2.10.2	Expression of the enthalpy ΔH_p vs. T_p — 98
1.2.10.3	Expression of the free energy ΔG vs. T_p — 99
1.2.10.4	Discussion —— 99
1.2.10.5	Conclusion —— 100
1.2.11	Characterization of the amorphous phase in semi-crystalline polymers
	by TWD spectroscopy —— 101
1.2.11.1	PTMG 2035 —— 101
1.2.11.2	Polyamide 12 —— 111
1.2.11.3	Polypropylene (undrawn and drawn) —— 120
1.2.11.3.1	Undrawn polypropylene —— 120
1.2.11.3.2	Drawn polypropylene —— 127
1.2.11.3.3	Comparison between undrawn and drawn polypropylene —— 134
1212	Conclusion — 137

3	A Dual and Cross-Dual interpretation of interactive coupling of conformers applied to thermally activated polarization and depolarization of polymers —— 141
1.3.1	Challenging results to the conventional models of polymer physics.
	Introduction to a new approach to the physics of polymer interactions: the Dual-Phase and Cross-Dual-Phase models —— 141
1.3.2	The $T_{q,\rho}$ peak and the $T_{l,l}$ transition — 146
1.3.3	Application of compensations to characterize interactive coupling in the
	amorphous state —— 148
1.3.3.1	Compensation laws —— 148
1.3.3.2	Compensations of ΔH and $\operatorname{Ln} \tau_o$. Positive and negative compensations;
	the organization of the compensations in a super-compensation
	network. The Dual-Split model explanation —— 149
1.3.3.3	Effect of the voltage field on the statistics of interactive coupling. The
	nature of what TWD is actually deconvoluting —— 164
1.3.4	Normalization of the compensations between $Ln(\tau_o)$ and ΔH .
	Introduction to "grid-shifting": a collateral shifting effect due to the
	interaction between the voltage field, temperature, and dielectric
1244	material — 167
1.3.4.1	Geometrical and thermokinetic features of a Debye peak — 169
1.3.4.2	Shifting the Debye peak obtained at a given T_p by various amounts δ_x —— 179
1.3.4.3	Shifting the Debye peaks obtained at various T_p by the same amount δ_x : the three temperature ranges of the voltage field-temperature interactions — 181
1.3.4.4	Shifting the Debye peak obtained at a given T_p to a given
	temperature —— 190
1.3.4.5	Definition and description of "grid-shifting" —— 204
1.3.4.6	Grid-shifting unifies the correlations between $Ln(\tau_o)$ and ΔH across
	ranges 1, 2, and 3 into a mastercurve: on the determination of the framework relating relaxation time and temperature —— 211
1.3.4.6.3	Properties of the GRID —— 211
1.3.4.6.2	Description of the grid shift factors — 218
1.3.4.6.3	The cross-dynamic structure of T_p : $T_p + \delta_{pH}$ and $T_p + \delta_{p\tau}$ — 223
1.3.5	Discussion and conclusions —— 233
1.3.5.1	A survey of Chapter 3 developments —— 233
1.3.5.2	Interpretation of the TWD results by the Dual-Phase model of polymer
	interactions —— 236
1.3.5.2.3	·
	polymers — 236
1.3.5.2.2	 Conclusions regarding the physical meaning of the results of TWD — 241

.3.5.3	General conclusions — 243
.3.5.4	The search for new concepts to build up a ladder of scales — 247
.3.5.4.1	The phantom variable $T_x - 247$
.3.5.4.2	Conjugated states: $[\Delta H_c = \Delta H(T_p + \delta_{p\tau}), \tau_{oc} = \tau_o (T_p + \delta_{pH})]$ — 248
.3.5.4.3	The role of T , coupled to other independent external parameters, in the
	formulation of the interactions —— 248
.3.5.4.4	Is this the way to end a serious book? —— 249
Appendix o	of Part I 251
	Conventional kinetics — 251
	Dual-Split Kinetics —— 253
	Part A. Dual-Phase Dissipative Kinetics (vertical splitting) —— 253
A.1	Structuring between the b and F conformers —— 253
A.2	Vertical Dual-Split Kinetics — 254
A.3	Examples of simulation of the vertical Dual-Split Kinetics equations (5)
	to (7) —— 255
A.3.1	Cooling simulation —— 255
A.3.2	Effect of cooling rate on the dynamics —— 260
A.3.3	Heating at constant rate —— 261
4.3.4	Isothermal return to equilibrium (annealing) —— 263
	Part B. Horizontal splitting of B_o : creation of $N_s(t)$ energetic kinetic
	systems —— 267
3.1	Computer simulations —— 268
3.1.1	Cooling —— 268
3.1.2	Heating —— 271
3.1.3	Isothermal annealing —— 272
3.1.4	Influence of the initial number of systems N_{so} — 275
	Part C. Compensating vertical and horizontal split constraints —— 281
	Final word —— 286
Dart II. 1	Application of Thermal-Stimulated Depolarization and
1	Thermal-Windowing Deconvolution (TSD/TWD) to the
	haracterization of the amorphous phase in polymers:
	comparison of TSD/TWD, DSC, DEA, and DMA for the characterization of e amorphous phase of polymers —— 289
1.1.1	General description —— 289
l.1.2	Outputs. Resolution. Accuracy. Limitations —— 297
1.1.2.1	DSC — 297
1422	DAMA and DEA 202

11.1.2.2.1	General considerations —— 302
11.1.2.2.2	DMA —— 305
11.1.2.2.3	DMA for coatings and adhesives: severe limitations —— 307
11.2.2.4	DMA accuracy —— 307
11.1.2.2.5	DEA —— 308
II.1.2.2.6	Conclusion (DMA and DEA) —— 309
II.1.2.3	TSD/TWD 309
11.1.2.3.1	General considerations —— 309
11.1.2.3.2	TWD accuracy —— 317
11.1.2.3.3	Result of changing the baseline of integration —— 317
11.1.2.3.4	Compensation search. Accuracy to determine the DOD number —— 321
II.1.2.3.5	Isothermal depolarization experiments —— 322
11.1.2.3.6	Spontaneous depolarization current —— 324
11.1.2.3.7	The thermal-stimulated polarization current —— 326
II.1.3	Conclusion —— 327
2 Pra	actical examples of TSD characterization —— 329
11.2.1	Introduction: the nature of the peaks —— 329
11.2.2	Selective polarization —— 331
11.2.3	The $T_{a,p}$ peak and the measurement of "free volume" — 332
11.2.4	Coatings, paints, pigments, and pressure-sensitive adhesives on
	substrates — 340
11.2.4.1	Coatings —— 340
11.2.4.1.1	Beverage container coatings —— 341
11.2.4.1.2	Sanitary can coatings —— 341
11.2.4.1.3	Powder coatings —— 343
11.2.4.1.4	Plastic coatings —— 344
11.2.4.2	Paints —— 345
11.2.4.2.1	Case study: curing of polyester paint —— 345
11.2.4.2.2	Case study: pre-painted coil coating quality control —— 347
11.2.4.3	Pigments —— 348
11.2.4.4	Pressure-sensitive adhesive on substrates —— 350
11.2.5	Characterization of polyolefins —— 351
11.2.5.1	TSD trace of polypropylene homopolymer —— 352
11.2.5.2	TSD trace of atactic polypropylene —— 352
11.2.5.3	Effect of orientation —— 353
11.2.5.4	Polyethylenes of varying densities —— 354
11.2.5.5	Effect of additives: Irganox 1076 —— 355
11.2.5.6	Copolymers and blends (PE, HDPE, and EPR). TPOs —— 356
11.2.5.7	Conclusions —— 357
11.2.6	TSD in quality control applications —— 358
11.2.6.1	Case study: TSD of "good" and "bad" LDPE tubes —— 358

11.2.6.2	Case study: quality control in diaper fabrication —— 359
II.2.7	Nucleation effect sensed by space charges —— 360
II.2.8	Monofilaments and single strands — 362
II.2.9	Wood and liquid crystal polymer — 363
II.2.9.1	Case study: wood —— 363
II.2.9.2	Case study: relaxation in a liquid crystal polymer: Vectra 900 —— 365
II.2.10	Characterization of rubbers and elastomers —— 373
II.2.10.1	Case study: vulcanized blends of crosslinked elastomers —— 373
II.2.10.2	Case study: NR and SBR blends —— 377
11.2.11	Conclusion —— 379
3 Pr	actical examples of Thermal-Windowing Deconvolution
ch	aracterization —— 381
II.3.1	Internal stress and the effect of the cooling rate on the DOD of
	engineering thermoplastics —— 381
11.3.2	Orientation and pressure effects on plastic materials —— 383
II.3.3	The curing of paint and powder coating on metal —— 384
II.3.3.1	Paints — 384
11.3.3.2	Determination of DOD —— 387
11.3.3.3	Powder coatings — 389
II.3.4	Structure of block copolymers and blends: how to quantify the level of
	interpenetration and segregation by thermal-windowing —— 391
11.3.4.1	Case study: characterization of latex copolymers by TWD 391
11.3.4.1.1	DSC — 391
11.3.4.1.2	DMA —— 392
11.3.4.1.3	TSD — 392
II.3.4.1.4	TWD — 392
11.3.4.2	Case study: characterization of the structure of polyether block amide resins by TWD —— 394
II.3.4.3	Characterization of vulcanized rubber blends and crosslinked natural rubbers —— 403
II.3.4.3.1	Case study: characterization of vulcanized blend of NR and NBR —— 404
11.3.4.3.2	Case study: crosslinked natural rubber vulcanizates —— 408
11.3.4.3.3	Case study: characterization of NR/SBR blends of different concentrations —— 408
11.3.4.4	Case study: influence of LDPE blend on the relaxation map of HDPE —— 422
II.3.5	Case study: characterization by TWD of the effect of plasticizer concentration on the amorphous state of PMMA —— 433
11.3.6	Case study: characterization of the adhesive strength of

11.3.7	Case study: characterization by TWD of the influence of the TiO ₂ content on the amorphous state of polystyrene —— 450				
II.3.7.1	Discussion —— 456				
II.3.7.1 II.3.8	Case study: influence of physical aging on the DOD and other				
טיכיוו	thermokinetic parameters studied by TWD —— 458				
II.3.8.1	Experimental procedure —— 459				
11.3.8.2	Results — 460				
11.3.8.3	Discussion — 467				
11.3.8.4	Conclusion — 469				
II.3.9	Case study: characterization of PEEK and PEI/PEEK blends by				
	TWD —— 470				
11.3.9.1	PEEK —— 470				
11.3.9.2	PEEK/PEI blend — 478				
11.3.10	Chapter conclusion —— 483				
4 Mu	ltiple compensation phenomena in the amorphous phase of				
	ymers —— 485				
11.4.1	Multi-compensations in a multi-phase system —— 485				
11.4.2	Multiple compensation phenomenon in amorphous polystyrene and				
	polycarbonate —— 487				
11.4.2.1	Polystyrene —— 487				
11.4.2.2	Polycarbonate —— 502				
11.4.2.3	Conclusion —— 504				
11.4.3	Multiple compensations in a polymer liquid crystal: Vectra —— 504				
11.4.3.1	Discussion —— 518				
11.4.4	Multi-compensations in wood samples —— 521				
11.4.5	PEBA block copolymers revisited: a multi-compensations				
	approach —— 529				
11.4.6	Discussion and conclusion —— 535				
Book conclusions —— 537 Bibliography —— 553 Further reading —— 565					
			Book acknowledgments —— 577		

Index ---- 579