

Contents

List of contributing authors — XI

Dinesh Kumar, Pooja Sharma, Ayush Mahajan, Ravi Dhawan, and Kamal Dua

1	Pharmaceutical interest of <i>in-silico</i> approaches — 1
1.1	Introduction — 1
1.1.1	Target recognition — 2
1.1.2	Target confirmation — 2
1.1.3	Lead discovery — 2
1.1.4	Lead optimization — 2
1.1.5	Preclinical studies — 2
1.1.6	Clinical trials — 3
1.2	Approaches — 3
1.2.1	Homology modeling (HM) — 3
1.2.2	Molecular docking (Interaction Networks) — 3
1.2.3	Virtual high-throughput screening — 6
1.2.4	Quantitative structure-activity relationship (QSAR) — 7
1.2.5	Hologram quantitative structure-activity relationship (HQSAR) — 8
1.2.6	Comparative molecular similarity indices analysis (CoMSIA) — 8
1.2.7	3D-pharmacophore mapping — 8
1.2.8	De novo design based on 3D-pharmacophore mapping — 9
1.2.9	Microarray analysis — 9
1.2.10	Conformational analysis — 9
1.2.11	Monte Carlo simulation — 10
1.2.12	Molecular dynamic (MD) simulation — 10
	References — 11

Mohammad Kalim Ahmad Khan and Salman Akhtar

2	Novel drug design and bioinformatics: an introduction — 15
2.1	Introduction — 15
2.2	Structure-based drug design — 19
2.2.1	Homology modelling — 19
2.2.2	Ligand docking — 22
2.2.3	Fragment-based drug design — 23
2.2.4	Molecular dynamics — 25
2.3	Ligand-based drug design — 26
2.3.1	Similarity search — 27
2.3.2	Pharmacophore mapping — 27
2.3.3	Quantitative structure-activity relationship — 27
2.4	Quantum mechanics/molecular mechanics — 28

2.5	Proteochemometrics modelling — 28
2.6	Deep learning approach — 29
2.7	Summary and outlook — 29
	References — 30

Shaheen Begum, Mohammad Zubair Shareef and Koganti Bharathi

3	<i>In silico</i> drug design: application and success — 37
3.1	Introduction to <i>in silico</i> drug design — 38
3.1.1	Introduction — 38
3.1.2	Classification — 38
3.1.3	Structure-based drug design (SBDD) — 38
3.1.4	Molecular docking — 40
3.1.5	Pharmacophore generation — 42
3.1.6	Virtual screening (VS) — 44
3.2	SBDD and applications — 45
3.2.1	Introduction — 45
3.2.2	The successful drugs developed using <i>in silico</i> approaches — 45
3.3	Ligand based drug design (LBDD) and applications — 53
3.3.1	Introduction — 53
3.3.2	Molecular descriptors-role in LBDD — 53
3.3.3	<i>In silico</i> applications of QSAR analysis — 54
3.3.4	Extended applications of QSAR combined with SBDD techniques — 56
3.3.5	Applications of mt-QSAR and mtk-QSAR models — 57
3.3.6	Success in the field of LBDD — 58
3.4	<i>In silico</i> approaches-application to predict pharmacokinetic parameters and toxicity (ADMET) — 62
3.4.1	<i>In silico</i> tools to predict absorption — 62
3.4.2	<i>In silico</i> tools to predict the distribution — 65
3.4.3	<i>In silico</i> tools to predict metabolism — 71
3.4.4	<i>In silico</i> tools to predict toxicity — 73
3.5	Conclusion — 79
	References — 79

Rodrigo S. A. de Araújo, Francisco J. B. Mendonça, Jr., Marcus T. Scotti and Luciana Scotti

4	Protein modeling — 85
4.1	Proteins — 85
4.2	Bioinformatics and the importance of computational tools — 87
4.3	Homologous structures and <i>de novo</i> protein design — 88
4.4	Protein data bank — 89
4.5	Molecular modeling — 90
4.5.1	Comparative modeling — 91
4.5.2	Free modeling — 91

4.6	Selected computational tools — 94
4.6.1	PyMOL — 94
4.6.2	Pfam — 95
4.7	SWISS-MODEL — 96
4.8	Critical assessment of protein structure prediction (CASP) — 97
4.9	Conclusion — 97
	References — 98

Rahul Ashok Sachdeo, Tulika Anthwal and Sumitra Nain

5	Fragment based drug design — 101
5.1	Introduction — 101
5.1.1	Fragment — 104
5.1.2	Design of library — 106
5.1.3	Identification of appropriate fragment to develop (biophysical or biochemical techniques, which interrogate the ligand–target binding) [1, 14, 15] — 106
5.1.4	Elaborating its chemical structure to generate a useful lead compound — 110
5.1.5	Growing — 110
5.1.6	Merging — 111
5.1.7	Linking — 111
5.2	Conclusion — 112
	References — 113

Richie R. Bhandare, Bulti Bakchi, Dilep Kumar Sigalapalli and Afzal B. Shaik

6	An overview of <i>in silico</i> methods used in the design of VEGFR-2 inhibitors as anticancer agents — 115
6.1	Introduction — 115
6.2	History of earlier FDA-approved VEGFR kinase inhibitors and the recent development — 117
6.3	Structure of VEGFR-2 — 118
6.4	Applications of <i>in silico</i> studies in the exploration of VEGFR-2 inhibitors — 119
6.4.1	Design of novel piperazine–chalcone hybrids as VEGFR-2 kinase inhibitors — 120
6.4.2	Docking model of 1-piperazinyl-phthalazines as potential VEGFR-2 inhibitors — 121
6.4.3	Identification of BAW2881 as a potent VEGFR-2 inhibitor: a success story — 122
6.4.4	Molecular modeling studies on thienopyrimidine scaffold as VEGFR-2 inhibitors — 124

6.4.5	Identification of new VEGFR-2 kinase inhibitors: pharmacophore modeling and virtual screening — 125
6.4.6	Molecular modeling of quinazoline containing 1,3,4-oxadiazole scaffold as VEGFR-2 inhibitor — 125
6.4.7	Identification of covalently binding, irreversible VEGFR-2 kinase domain inhibitors — 126
6.4.8	Molecular docking study of novel <i>N</i> -(2-carbamoyl-6-methoxyphenyl)-3,4,5-trimethoxybenzamide derivative as VEGFR-2 tyrosine kinase inhibitor — 128
6.5	Conclusions — 128
	References — 129

Varruchi Sharma, Anil Panwar, Girish Kumar Gupta and Anil K. Sharma

7	Molecular docking and MD: mimicking the real biological process — 133
7.1	Introduction — 133
7.2	AutoDock; docking of flexible ligands to receptors: — 134
7.3	AutoDock: coordinate file preparation — 135
7.4	Autogrid calculation — 135
7.5	Docking performed using AutoDock — 136
7.6	Analysis performed using AutoDock tools — 136
7.7	AutoDock result — 136
7.8	Molecular dynamic simulations and history — 138
7.9	PDB Structure and need of 3d conformation study — 138
7.10	Conformational changes are a common part of an enzymes' catalytic cycle — 138
7.11	The overview of calculating md simulation — 139
7.12	GPU and high computation power in MD simulations — 139
7.13	World's fastest computer and MD simulations — 141
7.14	Force filed: need and selection — 142
7.15	Benefits/outcomes of MD simulations — 142
7.16	Limitations and future prospects of MD simulations — 142
	References — 143

Babar Ali, Qazi Mohammad Sajid Jamal, Showkat R. Mir, Saiba Shams, and Mohammad Amjad Kamal

8	Molecular docking studies of tea (<i>Thea sinensis</i> Linn.) polyphenols inhibition pattern with Rat P-glycoprotein — 145
8.1	Introduction — 145
8.2	Materials and methods — 147
8.2.1	3D modeling of Rat P-gp receptor — 147
8.2.2	Template search — 147
8.2.3	Template selection — 147

8.2.4	Model building — 148
8.2.5	Model quality estimation — 148
8.2.6	Model validation — 148
8.2.7	Preparation of receptor molecule — 148
8.2.8	Ligand optimization — 149
8.2.9	Docking studies — 149
8.3	Results — 149
8.4	Discussion — 154
8.5	Conclusion — 154
	Abbreviations — 154
	References — 155

Nermin A. Osman

9	Statistical methods for <i>in silico</i> tools used for risk assessment and toxicology — 157
9.1	Background — 157
9.2	Risk assessment comprises four processes — 159
9.2.1	Hazard identification — 159
9.2.2	Exposure assessment — 159
9.2.3	Effect assessment — 159
9.2.4	Risk characterization — 160
9.3	Risk management — 160
9.3.1	<i>In silico</i> tools used for risk assessment — 160
9.3.2	Statistical methods for <i>in silico</i> risk assessment — 164
	References — 168

Maya Madhavan and Sabeena Mustafa

10	Systems biology—the transformative approach to integrate sciences across disciplines — 171
10.1	Introduction — 171
10.2	Transforming biology-insights from the systems biology approach — 173
10.2.1	Systems and systems biology — 173
10.2.2	Network modelling in systems biology — 177
10.2.3	From systems biology to synthetic biology — 177
10.2.4	Applications of synthetic biology — 179
10.3	Challenges and future directions — 188
10.4	Conclusions — 189
	References — 189

Index — 195