Contents

Preface ---- V

List of contributing authors --- XV

Anita	Šalić	and	Bruno	Zelić
Ailla	Salic	anu	DIUIIU	2011

1 Intro	oduction to environmental engineering —— 1
1.1	A new engineering field? —— 1
1.2	New era – todays environmental engineering —— 2
1.3	Environmental issues —— 5
1.3.1	Air quality – Why it is such a problem? —— 8
1.3.2	Soil quality – What problems emerge from soil pollution? ——
1.3.3	Water quality – Are water wars our future? —— 11
1.4	What is the future of environmental engineering? —— 13
1.5	Conclusion —— 13
	References —— 13

Ivančica Ternjej and Zlatko Mihaljević

```
2
   Ecology ---- 17
           Introduction --- 17
2.1
2.2
           Conditions for life --- 18
           Abiotic factors — 19
2.2.1
2.2.2
           Biotic relationships --- 20
           Community --- 27
2.2.3
           Ecosystem — 29
2.2.4
           Succession — 35
2.2.5
2.2.6
           Biomes --- 37
2.2.7
           Global changes -- 37
           Applied ecology --- 39
2.2.8
           References — 41
           Study questions — 43
```

Fnvironmental Chemistry — 47

Tomislav Bolanča, Šime Ukić and Mirjana Novak Stankov

_	The state of the s
3.1	Introduction —— 47
3.2	Electrolytes and non-electrolytes —— 47
3.3	Concentration and activity —— 48
3.4	Ionization of water —— 49
3.5	Strong and weak acids —— 51
3.6	Strong and weak bases —— 55
3.7	Hydrolysis of salts —— 58

3.8	Buffers —— 63
3.9	Reactions of complexation —— 66
3.10	Redox reactions —— 68
3.11	Solubility of minerals —— 73
3.11.1	Nature of solvent and solute —— 74
3.11.2	Temperature effect —— 75
3.11.3	Common-ion effect —— 75
3.11.4	Effect of complex formation —— 76
3.11.5	Electrolyte effect — 77
3.11.6	Effect of pH of the solution —— 78
3.12	Solubility of gases —— 83
	References —— 83
Felicita Briš	ki and Marija Vuković Domanovac
4 Environ	mental microbiology —— 85
4.1	Evolution of microorganisms —— 85
4.2	The microbial world: classification, metabolism and growth —— 86
4.3	Microbial diversity in the environment —— 97
4.4	Eutrophication process —— 105
4.5	Microorganisms in biodegradation and bioremediation — 106
4.6	Biodegradation of organic pollutants —— 109
4.7	Principles of bioremediation —— 113
4.7.1	What is bioremediation? —— 113
4.7.2	Some groups of microbes —— 115
4.8	Composting — 116
4.8.1	What is composting? Composting is nature's way of recycling — 116
	References —— 118
	A Appendix —— 120
Zoran Nakić	, Marta Mileusnić, Krešimir Pavlić and Zoran Kovač
5 Environ	mental geology and hydrology —— 121
5.1	Floods as natural hazard —— 122
5.1.1	Hydrological cycle —— 123
5.1.2	Extreme events in hydrology —— 128
5.2	Groundwater as geological resource — 131
5.2.1	Geological occurrence of groundwater —— 132
5.2.2	Water flow in unsaturated and saturated zone —— 133
5.2.3	Mass transport in porous medium —— 137
5.2.4	Modelling of water flow and solute transport in porous
	medium —— 140
5.2.5	Groundwater quality and pollution —— 143

5.3	Impact of mining industry on environment and human health —— 145
5.3.1	MineWaste —— 146
5.3.2	Impact on the environment —— 148
5.3.3	Impact on human health —— 151
5.4	Highlights —— 154
	References —— 155
	Questions —— 158
Aleksand	Ira Sander, Jasna Prlić Kardum, Gordana Matijašić and Krunoslav Žižek
6 Trans	sport phenomena in environmental engineering —— 159
6.1	Conservation laws —— 160
6.1.1	Macroscopic mass balance —— 160
6.1.2	Macroscopic energy balance —— 161
6.1.3	Macroscopic momentum balance —— 162
6.2	Motion of particles in fluid —— 163
6.3	Flow through porous media —— 167
6.4	Heat transfer —— 174
6.4.1	Heat conductivity —— 174
6.4.2	Heat transfer by conduction —— 175
6.4.3	Heat transfer by convection —— 176
6.4.4	Thermal radiation —— 178
6.5	Mass transfer —— 180
6.5.1	Molecular diffusion —— 181
6.5.2	Coefficient of mass diffusivity —— 181
6.5.3	Steady-state molecular diffusion in binary systems —— 182
6.5.4	Equimolar counter diffusion —— 183
6.5.5	Diffusion of component A through stagnant component B —— 183
6.5.6	Transient diffusion —— 183
6.5.7	Convective Mass Transfer —— 185
6.5.8	Interphase mass transfer —— 185
	References —— 191
	Examples for practice —— 191
Karolina	Maduna and Vesna Tomašić
7 Air p	ollution engineering —— 195
7.1	Introduction —— 195
7.1.1	The complexities of the air pollution protection —— 195
7.1.2	Basic definitions and classifications —— 199
7.2	Transport and transformation of air pollutants in the
	atmosphere —— 207
7.2.1	Primary and secondary air pollutants —— 208

7.2.2	Acid rain —— 214
7.2.3	Greenhouse effect —— 214
7.2.4	Global climate change vs global warming —— 215
7.3	Air pollution control —— 215
7.3.1	Selection of the air pollution control approach and control
	technique —— 215
7.3.2	Appropriate use of units and some basics of air pollution
	control —— 219
7.3.3	Control of particulate air pollution —— 222
7.3.4	Control of gaseous and vapor pollutants —— 233
	References —— 238
	Questions and exercises to get you thinking —— 240
Danijela Aš _l	perger, Davor Dolar, Krešimir Košutić, Hrvoje Kušić, Ana Lončarić
Božić and N	Iarija Vuković Domanovac
8 Water a	nd wastewater treatment engineering —— 241
8.1	Water and wastewater characterization and analysis —— 241
8.1.1	Biological characteristics — 244
8.1.2	Physical characteristics —— 244
8.1.3	Chemical characteristics — 245
8.2	Water and wastewater treatment by membrane processes —— 249
8.3	Biological wastewater treatment —— 256
8.3.1	Activated sludge process —— 258
8.3.2	Environmental factors —— 259
8.3.3	Membrane bioreactor —— 260
8.3.4	Biology of activated sludge —— 260
8.3.5	The Monod equation —— 262
8.4	Advanced oxidation processes —— 263
8.4.1	Chemical AOPs —— 264
8.4.2	Photo-assisted AOPs —— 268
8.4.3	Reactions and kinetics of hydroxyl radicals —— 271
	References —— 273
	Discussion, Questions and Exercises —— 275
lvica Kisić,	Željka Zgorelec and Aleksandra Percin
9 Soil trea	atment engineering —— 277
9.1	Introduction —— 277
9.2	Basics of soil science —— 278
9.3	Soil formation — 280
9.3.1	Factors and processes of soil formation —— 280
9.3.2	Basic soil characteristics — 281

9.3.3	Roles of soil —— 294
9.3.4	Potential soil contaminants —— 297
9.3.5	Remediation technologies for contaminated soils —— 300
9.3.6	Types, forms, techniques and technologies of remediation — 301
	References —— 311
	Practical tasks —— 313
	Study questions —— 315
Anita Šalić	Ana Jurinjak Tušek and Bruno Zelić
	ng of environmental processes —— 317
10.1	Models — 317
10.1	Mathematical models and modeling — 319
10.2	Basic rules in mathematical modeling — 323
10.5	Balance equations – Solving mathematical models —— 335
	Conclusion — 347
10.5	
	Important notification —— 348 References —— 348
	Examples for practice —— 348
Hrvoje Kuši	ć and Ana Lončarić Božić
	sessment —— 357
11.1	Introduction —— 357
11.1.1	What is risk? —— 357
11.1.2	What is hazard? —— 358
11.2	Looking for answers —— 359
11.3	Conceptual models —— 360
11.4	Risk assessment framework —— 362
11.5	Environmental risk assessment —— 364
11.6	Risk assessment methodology —— 366
11.7	Risk assessment for chemicals —— 368
11.8	Dose-response relationship —— 372
11.9	Risk assessment techniques — 375
11.9.1	Risk matrices —— 375
11.9.2	Logic trees —— 377
11.9.3	Event trees — 379
11.10	Conclusion marks — 380
	References — 380
	Study questions and tasks —— 382

Index ---- 385