

Contents

Preface — V

Acknowledgement to financial support — VII

1	Biomass components and characteristics — 1
1.1	Biomass components — 1
1.1.1	Composition analysis of biomass — 1
1.1.2	Distribution of biomass components — 2
1.2	Cellulose — 5
1.2.1	Structure of cellulose — 5
1.2.2	Characteristics of cellulose — 7
1.2.3	Isolation of cellulose and its model compounds — 8
1.3	Hemicellulose — 9
1.3.1	Structure of hemicellulose — 10
1.3.2	Characteristics of hemicellulose — 12
1.3.3	Isolation of hemicellulose and its model compounds — 12
1.4	Lignin — 15
1.4.1	Structure of lignin — 15
1.4.2	Characteristics of lignin — 17
1.4.3	Isolation of lignin and its model compounds — 19
1.5	Extractives — 24
1.6	Inorganic salts — 24
1.6.1	Composition of inorganic salts — 25
1.6.2	Removal of inorganic salts — 28
1.7	Water in biomass — 28
2	Pyrolysis of cellulose — 33
2.1	Fundamental process of cellulose pyrolysis — 33
2.1.1	Introduction to cellulose pyrolysis — 33
2.1.2	Pyrolysis of cellulose model compounds — 37
2.2	Effect of reaction parameters on the pyrolysis behavior of cellulose — 39
2.2.1	Effect of reaction temperature — 40
2.2.2	Effect of residence time — 43
2.2.3	Effect of acid pretreatment — 44
2.2.4	Effect of other reaction factors — 48
2.3	Pyrolysis kinetic models for cellulose pyrolysis — 49
2.3.1	One-step global reaction model — 50
2.3.2	Two-step reaction model — 51
2.3.3	Isoconversion methods — 54

2.3.4	Distributed activation energy model — 54
2.4	Active cellulose — 55
2.4.1	The collection and characterization of active cellulose — 55
2.4.2	Effects of different factors on the characteristics of active cellulose — 58
2.5	Mechanism of cellulose pyrolysis based on the formation of products — 62
2.5.1	Formation pathway of levoglucosan — 64
2.5.2	Formation pathway of 5-hydroxymethylfurfural — 65
2.5.3	Formation pathway of hydroxyacetaldehyde and hydroxyacetone — 66
2.5.4	Formation pathway of small molecular gases — 68
2.6	Mechanism of cellulose pyrolysis at molecular scale — 68
2.6.1	Simulation of pyrolysis of cellulose monomer — 70
2.6.2	Simulation of pyrolysis of cellobiose and cellotriose — 73
2.6.3	Simulation of pyrolysis of cellulose crystal with periodically repeated structure — 73
3	Pyrolysis of hemicellulose — 81
3.1	Fundamental process of hemicellulose pyrolysis — 81
3.1.1	Pyrolysis of hemicellulose-based monosaccharides — 81
3.1.2	Pyrolysis of xylan and glucomannan — 83
3.1.3	Pyrolysis of the isolated hemicellulose — 85
3.1.4	Comparison of the pyrolysis behaviors of hemicellulose-based monosaccharides and xylan — 85
3.2	Effect of reaction parameters on the pyrolysis behavior of hemicellulose — 88
3.2.1	Effect of reaction temperature — 88
3.2.2	Effect of residence time — 90
3.2.3	Effect of other reaction factors — 90
3.3	Mechanism of hemicellulose pyrolysis — 91
3.3.1	Pyrolysis kinetic model for hemicellulose pyrolysis — 91
3.3.2	Formation pathway of typical products from hemicellulose pyrolysis — 94
3.3.3	Mechanism of hemicellulose pyrolysis at molecular scale — 96
4	Pyrolysis of lignin — 103
4.1	Lignin pyrolysis process — 103
4.1.1	Fundamental process of lignin pyrolysis — 103
4.1.2	Pyrolysis of typical model compounds for lignin — 104
4.1.3	Pyrolysis of different lignin model compounds — 107
4.2	Effect of reaction parameters on the pyrolysis behavior of lignin — 117
4.2.1	Effect of reaction temperature — 118

4.2.2	Effect of residence time — 125
4.2.3	Effect of other reaction parameters — 126
4.3	Mechanism of lignin pyrolysis — 127
4.3.1	Pyrolysis kinetic model for lignin pyrolysis — 127
4.3.2	Lignin pyrolysis mechanism based on product distribution — 129
4.3.3	Mechanism of lignin pyrolysis at the molecular scale — 135
5	Cross coupling pyrolysis of biomass components — 141
5.1	Influence of component interaction on pyrolysis — 142
5.1.1	Effect of the ratio of hemicellulose to cellulose — 142
5.1.2	Effect of the ratio of cellulose to lignin — 144
5.1.3	Effect of the ratio of hemicellulose to lignin — 147
5.2	Coupled pyrolysis of components — 149
5.2.1	Pyrolysis behavior of a mixture of biomass components — 149
5.2.2	Influence of component proportions on the distribution of pyrolytic products — 150
5.3	Pyrolysis behaviors of detergent fibers — 154
5.3.1	Pyrolysis behaviors of different detergent fibers — 155
5.3.2	Distribution of pyrolytic products for different detergent fibers — 157
5.4	Influence of extractives on biomass pyrolysis — 160
5.4.1	Pyrolysis behaviors of biomass extractives — 160
5.4.2	Influence mechanism of extractives on biomass pyrolysis — 161
6	Catalytic pyrolysis of biomass components — 167
6.1	Influence of inorganic salts on the pyrolysis of biomass components — 167
6.1.1	Influence of inorganic salts on the kinetics of biomass components pyrolysis — 168
6.1.2	Influence of inorganic salts on the distribution of cellulose pyrolysis products — 171
6.2	Catalytic effect of zeolite catalysts on the pyrolysis of biomass components — 174
6.2.1	Classification and characteristics of zeolite catalysts — 174
6.2.2	Catalytic effect of microporous zeolite on the pyrolysis of biomass components — 176
6.2.3	Effect of mesoporous zeolites on the pyrolysis of biomass components — 186
6.3	Catalytic effect of metal oxide on the pyrolysis of biomass components — 188
6.3.1	Structural characteristics of metal oxide — 188
6.3.2	Catalytic effect of metal oxides on the pyrolysis of biomass components — 189

7	Pyrolysis of biomass — 193
7.1	Introduction to biomass pyrolysis — 193
7.2	Pyrolysis of different biomass species — 195
7.2.1	Pyrolysis of forestry biomass — 196
7.2.2	Pyrolysis of agricultural biomass — 198
7.2.3	Pyrolysis of herbaceous biomass — 199
7.2.4	Pyrolysis of aquatic biomass — 200
7.2.5	Comparison of pyrolysis products from different biomass species — 201
7.3	Fast pyrolysis of biomass for bio-oil production — 202
7.3.1	Reaction process of biomass fast pyrolysis — 203
7.3.2	Effect of reaction parameters on biomass fast pyrolysis — 204
7.4	Bio-oil graded catalytic upgrading — 218
7.4.1	High-efficiency separation of bio-oil based on molecular distillation — 220
7.4.2	Upgrading of bio-oil fractions from molecular distillation — 225
Abbreviations — 245	
Selected PhD theses supervised by the authors — 247	
The Authors' representative academic papers published in this field — 249	
Index — 253	