Table of Contents

	Prefa	nce	6	
	Exec	cutive Summary		
	Defir	nitions of expressions and terms	14	
1	Path to future district heating			
	1.1	Past, present, and future of district heating	17	
	1.2	Four generations of district heating	18	
	1.3	District heating within the fossil energy society	21	
	1.4	Transition challenges	21	
	1.5	District heating within the renewable energy society	23	
	1.6	Economics of low-temperature heat distribution	24	
	1.7	Previous and current works on low-temperature heat distribution	26	
	1.8	Major conclusions from this introduction	27	
	1.9	Organisation of this guidebook	27	
	1.10	Literature references in Chapter 1	28	
2	Economic benefits of low-temperature district heating			
	2.1	More geothermal heat extracted	30	
	2.2	Less electricity used in heat pumps	32	
	2.3	More waste heat extracted	33	
	2.4	More heat obtained from solar collectors	34	
	2.5	More heat recovered from flue gas condensation	36	
	2.6	More electricity generated in combined heat and power plants	37	
	2.7	Higher heat storage capacities	39	
	2.8	Lower heat distribution loss	41	
	2.9	Ability to use plastic pipes instead of steel pipes	41	
	2.10	Non-economic benefits of lower temperatures	43	
	2.11	Summary of economic benefits	43	
	2.12	Major conclusions concerning economic benefits	45	
	2.13	Literature references in Chapter 2	46	
3	Lower temperatures inside buildings			
	3.1	Temperature requirements and heat demands in buildings	47	
	3.2	Building installations and their impact on district heating temperatures	50	
	3.3	Customers with high supply temperatures requirements	53	
	3.4	Substation malfunctions and faults giving higher temperatures	54	
	3.5	Use of data to identify heating system improvements	57	
	3.6	Actions to lower the temperatures in space heating systems	59	
	3.7	Actions to lower the temperatures in domestic hot water systems	64	
	3.8	Actions to lower the temperatures in ventilation systems	67	
	3.9	How to design new building installations for lower temperatures	68	
	3.10	What to consider when existing buildings are connected to district heating	70	
	3.11	Major conclusions on lower temperatures in buildings	71	
	3.12	Literature references in Chapter 3	72	
4	Lower temperatures in heat distribution networks			
	4.1	Tracking malfunctioning substations with high return temperatures	75	
	4.2	Identification of unintentional circulation flows	79	

	4.3	Addressing bottlenecks in network sections	80		
	4.4	Successful cases of temperature reduction in existing systems	81		
	4.5	Subnetworks	84		
	4.6	Cascading solutions	85		
	4.7	Installing heat pumps to address subsection demands	86		
	4.8	Increased decentralised supply	87		
	4.9	Digitalisation opportunities	89		
	4.10	Design criteria for new systems	91		
	4.11	New innovative supply and distribution concepts	92		
	4.12	Lessons learned for obtaining lower system temperatures	97		
	4.13	Major conclusions concerning low-temperature systems	97		
	4.14	Literature references in Chapter 4	98		
5	Applied study: Campus Lichtwiese at TU Darmstadt				
	5.1	Transferability of the applied study	100		
	5.2	Background of the applied study	100		
	5.3	Monitoring data for identification of temperature reduction opportunities	101		
	5.4	Impact of district improvement measures on the return temperature	104		
	5.5	Comprehensive building renovation	104		
	5.6	Performance of hot water preparation	106		
	5.7	Performance of space heating circuits	108		
	5.8	Performance of ventilation heating circuits	110		
	5.9	Reduction of the district heating supply temperature	113		
	5.10	Recommendations for actions	113		
	5.11	Energetic, ecologic and economic comparison of the proposed actions	114		
	5.12	Major conclusions from the applied study	117		
	5.13	Literature references in Chapter 5	118		
6	Competitiveness of low-temperature district heating				
	6.1	Traits of business models in early LTDH installations	119		
	6.2	The cases	120		
	6.3	Results from case reviews	122		
	6.4	Questions to address when expanding to LTDH	124		
	6.5	National context and potential for LTDH to increase district heating competitiveness	125		
	6.6	Heat distribution characteristics in early implementations	130		
	6.7	Concentration of heat demand	132		
	6.8	Temperature levels	134		
	6.9	Heat distribution costs	136		
	6.10	Major conclusions concerning competitiveness	138		
	6.11	Literature references in Chapter 6	138		
7	Practical implementation of low-temperature district heating				
	7.1	Introduction	139		
	7.2	Successful implementation stories	140		
	7.3	Transition of a small-scale system - City of Gleisdorf, Austria	140		
	7.4	Housing estate Weihenbronn in Wüstenrot, Germany	142		
	7.5	Mijnwater project in Heerlen, The Netherlands	143		
	7.6	Cold district heating at FGZ Zürich, Switzerland	145		
	7.7	Stadtwerk Lehen in Salzburg, Austria	146		
	7.8	Smart City Reininghaus in Graz, Austria	147		

	7.9	Excess heat recovery from data centre in Braunschweig, Germany	148
	7.10	Excess heat from research facilities in Brunnshög in Lund, Sweden	149
	7.11	Geosolar District Heating in "Feldlager" in Kassel, Germany	150
	7.12	Conversion area 'Lagarde' in Bamberg, Germany	151
	7.13	Ultra-low-temperature district heating in Bjerringbro, Denmark	152
	7.14	Temperature reductions in existing apartment building in Viborg, Denmark	152
	7.15	Automatic return temperature limitation in Frederiksberg, Denmark	153
	7.16	District LAB Experimental Facility in Kassel, Germany	154
	7.17	Summary and lessons learnt from the case studies	155
	7.18	Major conclusions from the case studies	157
	7.19	Literature references in Chapter 7	158
8	Transition strategies		
	8.1	Adopted transition initiatives from five urban areas in Europe	160
	8.2	Visions	161
	8.3	Strategies	162
	8.4	Planning measures	163
	8.5	University campus systems as forerunners	164
	8.6	Major conclusions from transition strategies	165
	8.7	Literature references in Chapter 8	165
9	Conclusions		167
	9.1	Technological developments	167
	9.2	Non-technical aspects	168
	9.3	Policy implications	168
	9.4	Recommendations	170
	9.5	Main conclusion of this guidebook	171
10	Annexes		
	10.1	Typical configurations for low-temperature heat distribution networks	172
	10.2	Net list of completed detailed descriptions of cases	179
	10.3	Gross list of low-temperature inspiration initiatives	182
	10.4	Location index	197
	10.5	Participant organisations in the TS2 annex	198
	10.6	Literature references in Chapter 10	200
	Imprint		201