Contents

List of contributing authors ---- XI

Rameshwar Yadav Hiranmai and Murugesan Kamaraj

1 Occurrence, fate, and toxicity of emerging contaminants in a diverse ecosystem ---- 1 1.1 Introduction ---- 1 1.2 Sources and fate of ECs --- 3 1.3 Occurrence and Impacts of EC — 6 1.3.1 Agrochemicals — 6 1.3.2 Personal care products (PCPs) — 8 1.3.3 Pharmaceuticals — 9 1.3.4 Polyaromatic hydrocarbons (PAHs) —— 11 Nanoparticles (NPs) --- 12 1.3.5 1.3.6 Microplastics (MPs) --- 15 1.3.7 Endocrine disruptor chemicals (EDCs) — 17 1.4 Toxicity of ECs --- 18 Conclusion — 19 1.5

Shanmugasundaram Shyamalagowri, Natarajan Shanthi, Jagadeesan Manjunathan, Murugesan Kamaraj, Arumugam Manikandan and Jevaseelan Aravind

2 Techniques for the detection and quantification of emerging contaminants —— 25

- 2.1 Introduction 26
- 2.2 Quality assurance/quality control (QA/QC) in sampling 27
- 2.3 Extraction and cleanup techniques for ECs 29
- 2.3.1 Liquid-liquid extraction (LLE) 30

References — 20

- 2.3.2 Solid-phase extraction (SPE) —— 31
- 2.3.3 Solid-liquid extraction (SLE) 32
- 2.3.4 Ultrasonication assisted extraction (UAE) 33
- 2.3.5 Pressurized liquid extraction (PLE) 34
- 2.3.6 Microwave-assisted extraction (MAE) 34
- 2.3.7 QuEChERS (quick, easy, cheap, effective, rugged, and safe) method —— 35
- 2.4 Instrumental analysis of ECs 35
- 2.4.1 Chromatography and Spectrometry (MS) analysis 35
- 2.4.2 Inductively coupled plasma mass spectrometry (ICP-MS) —— 41
- 2.4.3 Other techniques —— **42**
- 2.5 Conclusion 46
 References 47

Dayana	ı Priyadharhsini Stephen and Suresh Babu Palanisamy
3	Advances in biopolymer composites and biomaterials for the removal of
	emerging contaminants — 53
3.1	Introduction —— 54
3.2	Quantification of biopolymer —— 56
3.3	Properties of biopolymers —— 57
3.4	Carbon-based biopolymers —— 58
3.5	Microalgae based biopolymers —— 58
3.6	Chitosan 60
3.7	Biopolymers derived from bacterial species — 61
3.8	Carbon nanotubes (CNTs) — 62
3.9	Application of biopolymers in bioremediation —— 63
3.9.1	Biopolymers as biosorbents —— 63
3.9.2	Water treatment applications — 63
3.9.3	Desalination —— 64
3.9.4	Oil-water separation —— 64
3.9.5	Removal of heavy metal ions —— 65
3.9.6	Removal of evolving contaminants —— 66
3.9.7	Removal of dye compounds —— 67
3.10	Conclusions —— 68
	References —— 69
Amare	Tiruneh Adugna
4	Development in nanomembrane-based filtration of emerging
•	contaminants — 75
4.1	Introduction to nanomembrane-based filtration — 75
4.2	Types and fabrication methods of nanomembrane for filtration — 76
4.2.1	Types of nanomembrane for filtration —— 76
4.2.2	Fabrication methods of nanomembrane for filtration —— 77
4.3	Separation mechanisms by the NF membrane — 79
4.3.1	Size exclusion —— 81
4.3.2	Charge exclusion —— 81
4.3.3	Physicochemical interactions —— 82
4.4	Recent developments in nanomembrane-based filtration for emerging
	contaminants —— 83
4.4.1	Removal of antibiotics and pesticides —— 84
4.4.2	Removal of pharmaceuticals —— 89
4.4.3	Personal care products —— 90
4.4.4	Removal of organics pollutants —— 90
4.5	Conclusions —— 91

References — 91

Vaanmathy Pandiyaraj, Ankita Murmu, Saravana Kumari Pandy, Murugan Sevanan, and Shanamitha Arjunan

5	Metal nanoparticles and its application on phenolic and heavy metal
	pollutants — 101
5.1	Introduction — 101
5.1.1	Metal nanoparticles —— 103
5.2	Heavy metals —— 104
5.2.1	Application of metal nanoparticles on heavy metals —— 105
5.3	Phenolic pollutants — 109
5.3.1	Effect of metal nanoparticles on phenolic pollutants — 110
5.3.2	Photocatalytic degradation of phenol using nanoparticles — 110
5.3.3	Electrocatalytic degradation of phenol using nanoparticles — 113
5.3.4	Biocatalytic degradation of phenol using nanoparticles —— 113
5.3.5	Microgel – nanoparticles based remediation —— 114
5.4	Conclusions —— 115
	References —— 115
Smilin E	Bell Aseervatham G, Arul Ananth Devanesan and Doulathunnisa Jaffar Ali
6	Nanobiocatalysts and photocatalyst in dye degradation —— 121
6.1	Introduction —— 121
6.2	Nanoparticles in dye degradation —— 123
6.3	Hybrid and heterogeneous photocatalyst —— 126
6.4	Photocatalysts and nano photocatalyst in dye degradation — 127
6.5	Nanocatalyst in industrial effluents — 129
6.6	Biocatalyst and nanobiocatalyst as dye degrading agent —— 130
6.7	Green synthesis of biopolymer nanobiocatalyst — 132
6.8	Conclusions —— 136
	References —— 137
Bhuvan	eswari Meganathan, Thirumalaisamy Rathinavel and Suriyaprabha Rangaraj
7	Trends in microbial degradation and bioremediation of emerging
	contaminants —— 145
7.1	Introduction —— 145
7.2	Persistence of emerging contaminant in the environment —— 147
7.3	Conventional methods of treatment and its disadvantages — 148
7.4	Microbial sources for degradation of ECs —— 149
7.4.1	Microbial biofilms —— 149
7.4.2	Microbial consortia —— 151
7.4.3	Extremophiles —— 151
7.4.4	Microbes as energy source —— 151
7.4.5	Bioreactors — 152
7.4.6	Microbial immobilization with nanoparticles and

nanobiomolecules --- 153

VIII — Contents

7.4.7	Genetically modified microbes (GMOs) —— 153
7.5	Microbial process of degrading the emerging pollutants —— 154
7.5.1	Bioremediation of ECs —— 154
7.5.2	Biodegradation using various types of microbes —— 155
7.5.3	Biosorption —— 156
7.5.4	Biostimulation, biopiling, and bioaugmentation — 158
7.5.5	Rhizoremediation —— 159
7.6	Necessity of microbial degradation —— 159
7.7	Challenges in microbial degradation —— 160
7.8	Scope of microbial degradation of emerging contaminants —— 160
7.9	Conclusions —— 161
	References —— 162

Ebrahim M. Abda, Atsede Muleta, Mesfin Tafesse, Sundramurthy Venkatesa Prabhu, and Afework Aemro

8	Recent endeavors in micropial remediation of micro- and
	nanoplastics —— 169
8.1	Introduction —— 170
8.2	Synthetic plastics and types —— 171
8.3	Formation, properties, and analysis of microplastics and
	nanoplastics —— 171
8.4	Environmental and health implications of micro- and
	nanoplastics —— 173
8.5	Microbial mediated-degradation mechanisms of microplastics and
	nanoplastics pollutants —— 175
8.6	Recent endeavors in micro- and nanoplastic microbial
	remediation —— 176
8.6.1	Exemplary microbes and enzymatic degradation of micro- and
	nanoplastics — 176
8.6.2	Merits, demerits, and biodegradation assessment — 181
8.6.3	The insights into the composition of Epiplastic Organisms: Omics
	approach —— 182
8.6.4	Technologies for the remediation of micro-nanoplastics waste —— 185
8.7	Practical snags and the future direction of research — 188
8.8	Concluding remarks —— 189
	References —— 189

Prasanth Bhatt, Swamynathan Ganesan, Infant Santhose and Thirumurugan Durairaj

9	Phytoremediation as an effective tool to handle emerging
	contaminants —— 195
9.1	Introduction —— 196
9.2	Transportation and manufacturing by-products —— 197
9.3	Pharmaceutical products —— 201
9.4	Personal care products —— 202
9.5	Nanomaterials —— 203
9.6	Food processing and packaging materials —— 204
9.7	Mining by-products —— 205
9.8	Batteries and E-waste —— 206

9.9 Radioactive elements — 207

Lithium —— 206

9.8.1

9.10 Conclusion and future prospects — 207

Future prospects — 229

Conclusions — 230 References — 230

References —— 208

Venkatesa Prabhu Sundramurthy, Thirumullaivoyal G. Nithya, Chandran Masi, Chinnasamy Gomadurai, and Ebrahim M. Abda

10 Recent advances and prospects for industrial waste management and product recovery for environmental appliances: a review —— 215

10.1	Introduction —— 215
10.2	Classification and characteristics of wastes — 216
10.3	Industrial waste —— 217
10.4	Waste management practices —— 217
10.4.1	Recycling —— 218
10.4.2	Techniques for solid waste management —— 218
10.4.3	Techniques for liquid waste management —— 220
10.5	Exploitation of microorganisms for waste management —— 221
10.6	Decomposition —— 223
10.7	Valorization of food processing waste by biorefinery technology —— 224
10.7.1	Biorefinery from brewer's spent grain (BSG) —— 224
10.7.2	Biorefinery from olive waste —— 224
10.7.3	Biorefinery from potato peels —— 226
10.8	Nutrients recovery from dairy product industries waste —— 226
10.9	Energy production from the waste —— 227
10.10	Recovery of resources from waste —— 228
10.11	Legislation on waste management —— 228

10.12

10.13