Contents

Preface — V

Chapter 1	
Introduction	11
1.1	Review of the concepts of digital power systems — 1
1.2	Definition of smart power system —— 2
1.2.1	Smart power systems and smart wide-area robots —— 2
1.2.2	SEMS and smart power systems in China — 3
1.3	The value of SPS construction —— 4
1.3.1	Improvement of disaster prevention capability —— 5
1.3.2	Economic operation indices and power quality improvement — 6
1.4	Global research: state of the art — 7
1.4.1	IECSA project —— 8
1.4.2	The seamless communication architecture of power systems — 9
1.4.3	The advanced control center in PJM —— 9
1.4.4	Intelligent utility network of IBM —— 10
1.4.5	Advanced distribution automation system —— 11
1.5	Summary —— 12
Chapter 2	
Overview of	power system hybrid control theory —— 13
2.1	Introduction —— 13
2.2	Basic concepts —— 13
2.2.1	State variable —— 14
2.2.2	State vector —— 14
2.2.3	State space —— 14
2.2.4	State trajectory —— 14
2.2.5	State space and state vector field —— 15
2.2.6	Mapping —— 15
2.2.7	True state vector and true state vector field —— 16
2.3	The dichotomy of state space —— 16
2.4	Optimality-approximating state space —— 18
2.5	E transform and C transform —— 20
2.6	Geometrical interpretation of the two-level transform —— 21
2.7	Events initiate control; control clears events — 22
2.8	Time-driven and event-driven control —— 23
2.9	Structure of a power system hybrid control system and smart
	energy management system —— 24
2.9.1	Data source and mathematical model of a power system hybrid
	control system —— 24

2.9.2	Analysis of the structure of a SEMS — 26
2.10	Summary —— 30
Chapter 3	
Smart power	er system infrastructures —— 32
3.1	Introduction —— 32
3.2	Digital substations — 32
3.2.1	Definition of digital substations —— 32
3.2.2	Fundamentals of constructing a digital substation —— 33
3.3	Digital power plants —— 41
3.3.1	Definition —— 41
3.3.2	Fundamentals of constructing a digital power plant —— 42
3.4	Digital transmission lines —— 47
3.4.1	Definition —— 47
3.4.2	Fundamentals of constructing digital transmission lines —— 48
3.5	Summary — 57
Chapter 4	
Basic platfo	orms of smart power systems —— 58
4.1	Introduction —— 58
4.2	Basic communication platform — 58
4.2.1	Requirements of the basic communication platform —— 58
4.2.2	Architecture and technology of the basic communication
	platform —— 63
4.3	Data-sharing platform —— 73
4.3.1	The needs of the data-sharing platform —— 73
4.3.2	The structure and technologies of the data-sharing platform — 74
4.3.3	Real-time data sharing with a kernel of advanced state
	estimation — 79
4.4	Summary — 80
Chantas F	
Chapter 5	dayed for amort normal creature analystics 02
	dexes for smart power system operation —— 82
5.1	Introduction — 82
5.2	Standard system of operational performance indicators —— 83
5.2.1	A standard index system — 83
5.2.2	Components of the standard index system —— 84
5.2.3	Workflow of indicator computations —— 88
5.3	Safety indicators — 90
5.3.1	Minimum radius of the voltage safety domain and its calculation method —— 91

5.3.2	Minimum radius of the small-disturbance safety domain and its calculation method —— 96
5.3.3	Minimum radius of the transient safety domain and its numerical
J.J.J	approximation — 98
5.3.4	Numerical studies —— 101
5.4	Coordinated control performance indicator of interconnected
	power system —— 104
5.4.1	Interconnected power grid active control performance indicator —— 104
5.4.2	Research on the reactive power control performance of an
	interconnected power grid —— 107
5.5	Summary —— 117
Chapter	6
Event an	alysis and processing technology —— 118
6.1	Introduction —— 118
6.2	Advanced State Estimation (ASE) algorithm —— 119
6.2.1	Measurement uncertainty —— 120
6.2.2	Main idea of ASE —— 122
6.2.3	Introduction of the ASE algorithm —— 123
6.2.4	Features of the ASE algorithm —— 127
6.2.5	Case study —— 127
6.3	An OPF algorithm based on the constraint transformation
	technology —— 130
6.3.1	OPF model —— 131
6.3.2	Workflow of the OPF algorithm —— 134
6.3.3	Case studies —— 136
6.4	Summary —— 139
Chapter	
Smart po	ower system visualization —— 140
7.1	Introduction —— 140
7.2	Smart power system visualization content —— 141
7.2.1	Operation state visualization —— 141
7.2.2	From state visualization to monitoring and control visualization —— 144
7.3	Automatic generation of topological graphics —— 146
7.3.1	Basic concepts —— 146
7.3.2	Automatic generation of single-line diagrams —— 148
7.3.3	Automatic generation of a main plant wiring diagram —— 152
7.4	Fast graphic drawing algorithm —— 155

7.4.1	Interpolation algorithm analysis —— 156
7.4.2	Grid merging method —— 157
7.4.3	Application examples —— 159
7.5	Summary —— 162
Chapter 8	
SEMS	163
8.1	Introduction —— 163
8.2	Definition and characteristics of SEMS —— 163
8.2.1	Definition of SEMS —— 163
8.2.2	Characteristics of the SEMS —— 164
8.2.3	SEMS and EMS —— 165
8.3	Components of SEMS —— 165
8.3.1	Event analysis system —— 167
8.3.2	Event processing system —— 168
8.3.3	Decision-making system for dispatchers —— 170
8.4	The event analysis model in the SEMS —— 172
8.4.1	Evaluation of security and stability events —— 172
8.4.2	Evaluation of power quality events —— 173
8.4.3	Evaluation of economic operation events —— 173
8.5	The event processing model in the SEMS —— 173
8.5.1	Security and stability event processing —— 174
8.5.2	Power quality event processing —— 176
8.5.3	Economic event processing —— 176
8.6	Controllable resources of the SEMS —— 178
8.6.1	Classification by the information utilized in system control —— 179
8.6.2	Classification by the response time of system control —— 179
8.6.3	Classification by power system operation status —— 180
8.7	The layered hierarchical structure of the SEMS —— 180
8.8	Conclusions —— 181
	
Chapter 9	
Smart grid	
9.1	Background —— 183
9.2	Definition of a smart grid — 183
9.3	Construction of a modernized distribution grid —— 184
9.4	Demand-side management for peak load regulation —— 185
9.5	Two-sided energy management systems for SGs —— 186
9.5.1	User-Smart Energy Management System (U-SEMS) — 187
9.5.2	Distribution-Smart Energy Management System —— 188
9.6	Implementation of new techniques for the development of
	SGs 189

9.6.1	Utilization of renewable energy resources —— 190
9.6.2	Storage technology —— 199
9.6.3	Economic interactive energy-consuming techniques —— 208
9.6.4	New operation and control methods for distribution networks —— 213
9.7	Conclusions —— 217

References — 219

Index —— 225