Contents

1	Challenges and Opportunities of the Energy Transition and
	the Added Value of Energy Systems Integration 1
	Marialaura Di Somma and Giorgio Graditi
1.1	Energy Transformation Toward Decarbonization and the Added Value of
	Energy Systems Integration 1
1.2	European Union as the Global Leader in Energy Transition 6
1.3	Pillars for the Transition Toward Integrated Decentralized Energy
	Systems 11
	List of Abbreviations 13
	References 13
2	Integrated Energy Systems: The Engine for Energy
	Transition 15
	Marialaura Di Somma and Giorgio Graditi
2.1	Introduction: the Concept of Integrated Energy System 15
2.2	Key Enablers for Integrated Energy Systems 18
2.2.1	Storage and Conversion Technologies 18
2.2.2	End User Engagement and Empowerment 22
2.2.3	Digitalization Enabler 24
2.2.4	Emergence of an Integrated Energy Market 27
2.3	Integrated Energy Systems at the Local Level 28
2.3.1	Conceptualizing Local Integrated Energy Systems 28
2.3.2	Map of Enabling Technologies 29
2.3.3	Key Stakeholders and Related Benefits from Local Integrated Energy
	Systems Deployment 31
2.4	Main Barriers for Implementation 33
2.4.1	Techno-economic Barriers 34
2.4.2	Socioeconomic Barriers 35
2.4.3	Policy and Regulatory Barriers 35
2.5	Conclusions 36
	List of Abbreviations 38
	References 38

vi Conte	ents
------------	------

3	Power Conversion Technologies: The Advent of Power-to-Gas, Power-to-Liquid, and Power-to-Heat 41
	Joshua A. Schaidle, R. Gary Grim, Ling Tao, Mark Ruth, Kevin Harrison,
	Nancy Dowe, Colin McMillan, Shanti Pless, and Douglas J. Arent
3.1	Introduction 41
3.1.1	Motivation for Power-to-X 41
3.1.2	Defining Power-to-X Categories 43
3.1.3	Goal of this Chapter 44
3.1.3	Power-to-X Technologies 44
3.2.1	Power-to-Gas 44
3.2.1.1	Natural Gas Market Demand 45
3.2.1.1	Technology Identification and Overview 46
3.2.1.2	Unique Integration Challenges and Opportunities 47
	Power-to-Chemicals-and-Fuels 48
3.2.2	
3.2.2.1	
3.2.2.2	Technology Identification and Overview 49
3.2.2.3	Unique Integration Challenges and Opportunities 54
3.2.2.4	Implications on Power Generation 54 Power-to-Heat 57
3.2.3	
3.2.3.1	Market and Demand 57
3.2.3.2	Technology Identification and Overview 60
3.2.3.3	Unique Integration Challenges and Opportunities 60
3.2.3.4	Implications on Power Generation 62
3.3	Overarching Challenges, Opportunities, and Considerations 62
3.3.1	Feedstock and Energy Sourcing 62
3.3.1.1	Feedstocks (CO ₂ , N ₂ , H ₂ O, and Biomass) 62
3.3.1.2	Operational Flexibility for Grid Integration and Revenue 63
3.3.2	Key Considerations from Life Cycle Analysis and Techno-economic Analysis 64
3.3.2.1	Life Cycle Analysis 64
3.3.2.2	Techno-Economic Analysis 64
3.3.3	Business Model and Business Innovation 65
3.4	Concluding Remarks 66
	Disclaimer 66
	List of Abbreviations 66
	References 67
4	Role of Hydrogen in Low-Carbon Energy Future 71
	Andrea Monforti Ferrario, Viviana Cigolotti, Ana Marìa Ruz, Felipe Gallardo,
	Jose García, and Giulia Monteleone
4.1	Introduction 71
4.2	Main Drivers for Hydrogen Implementation 72
4.2.1	Increasing Penetration of Stochastic Renewable Energy 73
4.2.2	Opportunity of Hydrogen as a Sector Coupling Enabler 74
4.3	Hydrogen Economy and Policy in Europe and Worldwide 74
	, , , , , , , , , , , , , , , , , , ,

4.4	Main Renewable Hydrogen Production, Storage, and Transmission/Distribution Schemes 77
4.4.1	Hydrogen Production Pathways 77
4.4.2	Hydrogen Transmission and Distribution 79
4.4.2.1	Main Hydrogen Storage Technologies 79
4.4.2.2	Methods for Hydrogen Transmission and Distribution 81
4.5	Technological Applications in Integrated Energy Systems and Networks 83
4.5.1	Hydrogen as an Energy Storage System for Flexibility at Different Scales 83
4.5.2	Industrial Use as a Renewable Feedstock in Hard-to-Abate Sectors and for the Production of Derivates 84
4.5.3	Hydrogen Mobility: A Complementary Solution to Battery Electric Vehicles 85
4.5.4	Fuel Cells, Flexible Electrochemical Conversion Systems for High-Efficiency Power, and/or CHP Applications 86
4.6	Conclusions 89 List of Abbreviations 90
	References 91
5	Review on the Energy Storage Technologies with the Focus on
	Multi-Energy Systems 105 Morteza Vahid-Ghavidel, Sara Javadi, Matthew Gough, Mohammad S. Javadi, Sérgio F. Santos, Miadreza Shafie-khah, and João P.S. Catalão
5.1	Introduction 105
5.2	Energy Storage 106
5.2.1	Main Concept of Energy Storage in the Power System 106
5.2.2	Different Types of Energy Storage Systems 108
5.2.2.1	Electromechanical Energy Storage Systems 110
5.2.2.2	Electromagnetic Energy Storage Systems 111
5.2.2.3	Electrochemical Energy Storage Systems 112
5.2.2.4	Thermal Energy Storage Systems 113
5.2.3	Advantages of Storage in the Energy System 113
5.3	Energy Storage Technology Application in the Multi-Energy Systems 116
5.4	Conclusion 118 List of Abbreviations 119 References 119
6	Digitalization and Smart Energy Devices 123 Maher Chebbo
6.1	Introduction 123
6.2	Our Vision of the Digital Networks 130
6.3	Enabling State-of-the-Art Digital Technologies 138
6.4	Key Digital Use Cases and Associated Benefits 144

viii	Contents	
	6.5	Integrated Digital Platform Across Stakeholders 149
	6.6	Key Digital Recommendations 150
	6.7	Conclusion 156
		List of Abbreviations 159
		References 160
		Further Reading 162
	7	Smart and Sustainable Mobility Adaptation Toward the Energy
		Transition 165
		Carla Silva, Catarina Marques, Mariana Raposo, and Angelo Soares
	7.1	Smart and Sustainable Mobility Definitions and Metrics 165
	7.1.1	Sustainable Mobility KPI (Key Performance Indicators) 167
	7.1.2	KPI of Urban Mobility in Two European Cities 169
	7.2	Smart Mobility Applied to Bicycle Sharing in Urban Context and Impacts
	7.2	on Sustainability 175
	7.3 7.4	Ground-Level Ozone Indicator 178 Energy Transition 179
	7. 4 7.5	Energy Transition 179 Resilience of the Mobility System 180
	7.5 7.6	Conclusions 182
	7.0	Acknowledgments 182
		List of Abbreviations 183
		References 184
	8	Evolution of Electrical Distribution Grids Toward the Smart
		Grid Concept 187
		Lucía Suárez-Ramón, Pablo Arboleya, José Lorenzo-Álvarez, and
		José M. Carou-Álvarez
	8.1	Smart Grid Concept 187
	8.2	Advanced Metering Infrastructure (AMI) General Description 188
	8.3	Communications and Impact on Remote Management 199
	8.3.1	PLC PRIME Communication 200
	8.3.2	Data Concentrator Unit (DCU) Description 204
	8.3.3	Smart Meter Description 205
	8.3.4	Future Scenario: Evolution of Communications Toward Hybrid
	0.4	Systems 206
	8.4	Central System for Data Reception and Analysis 206 Real-Time Event Management 207
	8.4.1 8.4.2	LV Network Monitoring 208
	8.4.3	Automatic Diagnostic 208
	8.5	DSO Challenge: AMI for LV Network Management 209
	8.6	Digital Twin of the LV Network 210
	8.7	Evolution of the Functionalities for LV Network Management 212
	8.8	Conclusions 213
		List of Abbreviations 213
		References 214

9	Smart Grids for the Efficient Management of Distributed
	Energy Resources 215
	Roberto Ciavarella, Marialaura Di Somma, Giorgio Graditi, and Maria Valenti
9.1	Electrical System Toward the Smart Grid Concept 215
9.1.1	Technology Areas of Smart Grids 218
9.1.2	Services and Functionalities of the Smart Grids 219
9.1.2.1	Needs to Integrate New Emerging Technologies 220
9.1.2.2	Improve the Operation of the Network 220
9.1.2.3	New Investment Planning Criteria 220
9.1.2.4	Improve the Functionality of the Market and Services to End Users 220
9.1.2.5	Active Involvement of the End User 221
9.1.2.6	Increased Energy Efficiency and Reduced Environmental Impact 221
9.2	Need of a Multi-Domain Optimization in Smart Grids 221
9.3	Advanced Control Mechanisms for Smart Grid 225
9.3.1	Architecture and Grid Model 225
9.3.2	Congestion Issues in the TSO Domain 226
9.3.3	Congestion Issues in the DSO Domain 228
9.3.4	Frequency Instability in the TSO Domain 230
9.4	Case Studies 231
9.4.1	Case Study 1: Congestion Events at the Transmission Level 231
9.4.2	Case Study 2: Congestion Events at the Distribution Level 232
9.4.3	Case Study 3: Frequency Instability Issues 233
9.5	Conclusions 234
	List of Abbreviations 235
	References 235
40	
10	Nearly Zero-Energy and Positive-Energy Buildings: Status and
	Trends 239
10.1	Denia Kolokotsa, Gloria Pignatta, and Giulia Ulpiani
10.1	Introduction 239
10.1.1	Concept of Nearly Zero- and Positive-Energy Buildings 240
10.1.1.1	Definitions, Regulations, and Standards 240
10.1.2 10.1.2.1	Overview of Design Strategies 242
	Energy Conservation Strategies 243
10.1.2.2	Energy Generation Strategies 246 Smart Readiness 248
10.1.2.3	
10.2	Status and Research Directions on High-Performance Buildings for
10.2.1	the Coming Decade 253 Overview of Case Studies and Research Projects 252
	Overview of Case Studies and Research Projects 253
10.2.1.1	Challenges, Drivers, and Best Practices 256

10.2.2	Transition from Individual Nearly Zero-Energy Buildings to
	Positive-Energy Districts (PEDs) 258
10.3	Conclusions 259
	List of Abbreviations 260
	References 261
11	Transition Potential of Local Energy Communities 275
	Gabriele Comodi, Gianluca Spinaci, Marialaura Di Somma, and
	Giorgio Graditi
11.1	Introduction 275
11.1.1	"2030 Agenda for Sustainable Development" of United Nations 276
11.1.2	Clean Energy for All European Package: Renewable and Citizen "Energy Communities" 277
11.1.3	Human Capital for Local Energy Communities 278
11.1.4	Local Energy Communities: An Organizational Bottom-Up Model to
	Empower Final Users 279
11.2	Local Energy Communities Making the Green Deal Going Local 280
11.2.1	Game Changer of the Green Deal 280
11.2.2	Green Deal Going Local 283
11.2.3	Neighborhood Approach and Local Energy Communities in the Green
	Deal 284
11.3	Local Energy Communities as Integrated Energy Systems at Local
	Level 285
11.3.1	Local Energy Communities as Promoters for Sector Coupling 285
11.3.2	Optimal Medium-Long-Term Planning for Local Energy
	Communities 287
11.3.3	Key Technologies in the Context of Local Energy Communities 288
11.3.4	Digitalization to Enable Flexibility and Empower Final Users 296
11.4	Local Energy Communities and Energy Transition: A Vision for the Next
	Future 298
11.4.1	Some Reflections 299
11.5	Conclusions 300
	List of Abbreviations 301
	References 302

Index 305

x Contents