

## Contents

**Preface** ix

**Acknowledgments** xv

**Abbreviations** xvii

|          |                                                                      |    |
|----------|----------------------------------------------------------------------|----|
| <b>1</b> | <b>Dimerization of Alkynes and Alkenes</b>                           | 1  |
| 1.1      | Markovnikov Dimerization of Terminal Alkynes                         | 1  |
| 1.2      | Anti-Markovnikov (Head-to-Head) Dimerization of Terminal Alkynes     | 7  |
| 1.3      | Dimerization and Cross-dimerization of Terminal Alkenes              | 14 |
| 1.4      | Cross-dimerization of Different Alkynes or Alkynes with Alkenes      | 18 |
|          | References                                                           | 26 |
| <b>2</b> | <b>Addition of C(sp)–H Bonds to Unsaturated Compounds</b>            | 33 |
| 2.1      | Addition of Terminal Alkynes to Carbonyl Compounds                   | 33 |
| 2.2      | Addition of Terminal Alkynes to Alkenes                              | 36 |
| 2.3      | Addition of Terminal Alkynes to Imines                               | 38 |
| 2.4      | Addition of Terminal Alkynes to Other Compounds                      | 40 |
|          | References                                                           | 42 |
| <b>3</b> | <b>Functionalized Alkenes from Hydrofunctionalization of Alkynes</b> | 47 |
| 3.1      | Hydroboration of Alkynes                                             | 47 |
| 3.2      | Hydrosilylation of Alkynes                                           | 52 |
| 3.3      | Hydrostannylation of Alkynes                                         | 57 |
| 3.4      | Hydroamination of Alkynes                                            | 61 |
| 3.4.1    | Hydroamination of Alkynes with Primary Amines                        | 61 |
| 3.4.2    | Hydroamination of Alkynes with Secondary Amines                      | 63 |
| 3.4.3    | Cyclohydroamination of Alkynes                                       | 65 |
| 3.4.4    | Aminocarbonylation of Alkynes                                        | 67 |
| 3.5      | Hydrophosphination of Alkynes and Related H—P(O) Addition            | 69 |
| 3.5.1    | Hydrophosphination of Alkynes                                        | 70 |
| 3.5.2    | Addition of P <sup>V</sup> (O)—H Bond to Alkynes                     | 72 |
| 3.6      | Hydrothiolation of Alkynes                                           | 76 |
| 3.6.1    | Markovnikov Hydrothiolation of Alkynes                               | 77 |

|          |                                                                                             |            |
|----------|---------------------------------------------------------------------------------------------|------------|
| 3.6.2    | <i>Anti</i> -Markovnikov Hydrothiolation of Alkynes                                         | 78         |
| 3.7      | Addition of <i>O</i> -nucleophiles to Alkynes                                               | 81         |
| 3.7.1    | Addition of Alcohols and Phenols to Alkynes                                                 | 81         |
| 3.7.2    | Addition of Acids to Alkynes                                                                | 84         |
|          | References                                                                                  | 86         |
| <b>4</b> | <b>Hydrofunctionalization of Carbon–Carbon Double Bonds</b>                                 | <b>103</b> |
| 4.1      | Hydroboration of Alkenes                                                                    | 103        |
| 4.1.1    | Markovnikov Hydroboration of Alkenes                                                        | 104        |
| 4.1.2    | <i>Anti</i> -Markovnikov Hydroboration of Alkenes                                           | 104        |
| 4.1.3    | Hydroboration of Allenes and 1,3-dienes                                                     | 105        |
| 4.1.4    | Asymmetric Hydroboration of Alkenes                                                         | 106        |
| 4.2      | Hydrosilylation of Carbon–Carbon Double Bonds                                               | 107        |
| 4.2.1    | Markovnikov and <i>Anti</i> -Markovnikov Hydrosilylation of Alkenes                         | 107        |
| 4.2.2    | Hydrosilylation of Allenes                                                                  | 109        |
| 4.2.3    | Hydrosilylation of 1,3-dienes                                                               | 110        |
| 4.2.4    | Asymmetric Hydrosilylation of Alkenes                                                       | 110        |
| 4.3      | Hydrostannation of Carbon–Carbon Double Bonds                                               | 111        |
| 4.4      | Hydroamination of Carbon–Carbon Double Bonds                                                | 113        |
| 4.4.1    | Markovnikov Hydroamination of Alkenes                                                       | 113        |
| 4.4.2    | <i>Anti</i> -Markovnikov Hydroamination of Alkenes                                          | 115        |
| 4.4.3    | Hydroamination of Allenes and 1,3-dienes                                                    | 116        |
| 4.4.4    | Asymmetric Hydroamination of Alkenes                                                        | 118        |
| 4.4.5    | Nitrogen Heterocycles from Intramolecular Hydroamination of Alkenes                         | 119        |
| 4.5      | Hydroporphination of Alkenes and Related P <sup>V</sup> (O)–H Addition                      | 121        |
| 4.6      | Hydrothiolation of Carbon–Carbon Double Bonds                                               | 125        |
| 4.7      | Addition of <i>O</i> -nucleophiles to Alkenes                                               | 128        |
|          | References                                                                                  | 130        |
| <b>5</b> | <b>Double Functionalization of Alkynes and Alkenes by Addition of Element–Element Bonds</b> | <b>147</b> |
| 5.1      | Addition Reaction of Group 13 Element–Element Bonds                                         | 147        |
| 5.1.1    | <i>cis</i> -Addition Reactions to Alkynes                                                   | 147        |
| 5.1.2    | <i>trans</i> -Addition Reactions to Alkynes                                                 | 149        |
| 5.1.3    | Addition Reactions to Alkenes                                                               | 150        |
| 5.1.4    | Synthesis of 1,1-diborylalkanes/Alkenes via Addition of B–B Bond                            | 151        |
| 5.2      | Addition Reaction of Group 14 Element–Element Bonds                                         | 153        |
| 5.3      | Addition Reaction of Group 15 Element–Element Bond                                          | 156        |
| 5.4      | Addition Reactions of Group 16 Element–Element Bond                                         | 159        |
| 5.4.1    | <i>cis</i> -Addition Reactions to Alkynes                                                   | 160        |
| 5.4.2    | <i>trans</i> -Addition Reactions to Alkynes                                                 | 161        |
| 5.4.3    | Different Heteroatom Bond Addition Reactions to Alkynes                                     | 163        |
| 5.4.4    | Addition Reactions to Alkenes                                                               | 163        |

|          |                                                                                      |            |
|----------|--------------------------------------------------------------------------------------|------------|
| 5.5      | Addition Reactions of Element–Element Bonds from Different Group Heteroatoms         | 164        |
| 5.5.1    | <i>cis</i> -Addition Reactions to Alkynes                                            | 165        |
| 5.5.2    | <i>trans</i> -Addition Reactions to Alkynes                                          | 169        |
| 5.5.3    | Addition Reactions to Alkenes                                                        | 172        |
|          | References                                                                           | 174        |
| <b>6</b> | <b>Double Functionalization of Alkynes by Addition of Carbon–Element Bonds</b>       | <b>183</b> |
| 6.1      | Addition Reactions of Carbon–Group 13 Bonds                                          | 183        |
| 6.2      | Addition Reactions of Carbon–Group 14 Bonds                                          | 185        |
| 6.2.1    | Addition Reactions of Carbon–Silicon Bonds                                           | 185        |
| 6.2.2    | Addition Reactions of Carbon–Germanium Bonds                                         | 188        |
| 6.2.3    | Addition Reactions of Carbon–Tin Bonds                                               | 189        |
| 6.3      | Addition Reactions of Carbon–Group 15 Bonds                                          | 191        |
| 6.4      | Addition Reactions of Carbon–Group 16 Bonds                                          | 195        |
| 6.4.1    | Addition Reactions of Carbon–Oxygen Bonds                                            | 195        |
| 6.4.2    | Addition Reaction of Carbon–Sulfur Bonds                                             | 198        |
| 6.4.3    | Addition Reactions of Carbon–Selenium Bonds                                          | 202        |
| 6.5      | Addition Reactions of Carbon–Halogen Bonds to Alkynes                                | 204        |
| 6.5.1    | $C(sp^3)$ —X Activation and Its Addition Reactions                                   | 205        |
| 6.5.2    | $C(sp^2)$ —X Activation and Its Addition Reactions                                   | 208        |
| 6.5.3    | $C(sp)$ —X Activation and Its Addition Reactions                                     | 213        |
| 6.6      | Addition Reactions of Carbon–Carbon Single Bonds                                     | 216        |
| 6.6.1    | Addition Reactions of Strained C–C Bonds                                             | 216        |
| 6.6.2    | Addition Reactions of C—CN Bonds                                                     | 218        |
| 6.6.3    | Other Carbon–Carbon Bond Cleavage and Their Addition Reactions                       | 222        |
|          | References                                                                           | 224        |
| <b>7</b> | <b>Carbocycles from Annulation of Alkynes and Alkenes</b>                            | <b>235</b> |
| 7.1      | Four-Membered Carbocycles                                                            | 235        |
| 7.1.1    | Construction of Cyclobutenes                                                         | 235        |
| 7.1.2    | Construction of Cyclobutanes                                                         | 240        |
| 7.2      | Five-Membered Carbocycles                                                            | 242        |
| 7.2.1    | Five-Membered Carbocycles by $[2+2+1]$ Cycloaddition                                 | 242        |
| 7.2.2    | Five-Membered Carbocycles by $[3+2]$ Cycloaddition                                   | 243        |
| 7.2.3    | Intramolecular Cycloaddition of Active $sp^3$ C—H to Carbon–Carbon Unsaturated Bonds | 248        |
| 7.2.4    | Five-Membered Carbocycles from Intramolecular Cycloaddition of Unsaturated Bonds     | 250        |
| 7.3      | Six-Membered Carbocycles                                                             | 251        |
| 7.3.1    | Benzene Ring Formation                                                               | 251        |
| 7.3.2    | Naphthalene and Polycyclic Aromatic Hydrocarbons (PAHs) Ring Formation               | 258        |

|           |                                                                                                  |            |
|-----------|--------------------------------------------------------------------------------------------------|------------|
| 7.3.3     | 1,3-Cyclohexadiene Ring Formation Via Cycloaddition of Alkynes                                   | 263        |
| 7.4       | Seven-Membered Carbocycles                                                                       | 266        |
| 7.5       | Eight-Membered and Larger Carbocycles                                                            | 268        |
|           | References                                                                                       | 272        |
| <b>8</b>  | <b>Heterocycles from Cycloaddition of Alkynes</b>                                                | <b>285</b> |
| 8.1       | Four-membered Heterocycles                                                                       | 285        |
| 8.2       | Five-membered Heterocycles                                                                       | 286        |
| 8.2.1     | Pyrroles, Furans, and Thiophenes Synthesis                                                       | 287        |
| 8.2.2     | Indoles, Benzo[ <i>b</i> ]Furans, Benzo[ <i>b</i> ]Thiophenes, and Benzo[ <i>b</i> ]Selenophenes | 300        |
| 8.2.3     | Five-membered Rings with Two Heteroatoms                                                         | 308        |
| 8.3       | Six-membered Heterocycles                                                                        | 319        |
| 8.3.1     | Pyridine Derivatives via Cycloaddition of Alkynes with Nitriles                                  | 320        |
| 8.3.2     | Benzopyridine Derivatives (Quinolines and Isoquinolines)                                         | 326        |
| 8.3.3     | 2-Pyridone Derivatives and Their Benzo-derivatives (Quinolinones and Isoquinolones)              | 330        |
| 8.3.4     | Six-membered <i>N</i> -heterocycles Having Two Nitrogen Atoms                                    | 334        |
| 8.3.5     | 2-Pyrone, Coumarin, Isocoumarin, and Chromone Derivatives                                        | 336        |
| 8.4       | Other Heterocycles                                                                               | 341        |
|           | References                                                                                       | 346        |
| <b>9</b>  | <b>Carbonyl Compounds from Alkynes and Alkenes</b>                                               | <b>365</b> |
| 9.1       | Hydration of Alkynes                                                                             | 365        |
| 9.2       | Hydroformylation of Alkynes and Alkenes                                                          | 369        |
| 9.2.1     | Hydroformylation of Alkynes                                                                      | 369        |
| 9.2.2     | Hydroformylation of Alkenes                                                                      | 370        |
| 9.3       | Hydroacylation of Alkynes and Alkenes                                                            | 372        |
| 9.4       | Hydroamidation of Alkynes and Alkenes                                                            | 376        |
| 9.5       | Hydrocarboxylation of Alkynes and Alkenes                                                        | 378        |
| 9.6       | Hydroesterification of Alkynes and Alkenes                                                       | 379        |
| 9.7       | Carbonylation of Alkynes and Alkenes                                                             | 380        |
| 9.7.1     | Carbonylation of Alkynes                                                                         | 381        |
| 9.7.2     | Carbonylation of Alkenes                                                                         | 384        |
| 9.7.3     | Cyclocarbonylation of Alkynes and/or Alkenes                                                     | 384        |
|           | References                                                                                       | 393        |
| <b>10</b> | <b>Natural Product Synthesis via Alkyne Transformation</b>                                       | <b>407</b> |
| 10.1      | Hydrofunctionalization of Alkynes in Natural Product Synthesis                                   | 407        |
| 10.2      | Double Functionalization of Alkynes in Natural Product Synthesis                                 | 408        |
| 10.3      | Cycloaddition of Alkynes in Natural Product Synthesis                                            | 408        |
| 10.4      | Carbonylation of Alkynes in Natural Product Synthesis                                            | 411        |
|           | References                                                                                       | 412        |