

Contents

Preface *xix*

Supramolecular Catalysis: An Introduction *xxi*

Part I Ligand–Ligand Interactions 1

1 Supramolecular Construction of Bidentate Ligands Through Self-assembly by Hydrogen Bonding 3
Felix Bauer and Bernhard Breit

1.1 Introduction 3
1.2 Formation of Bidentate Ligands Through Self-assembly via Hydrogen Bonding and Application in Hydroformylation 5
1.2.1 2-Hydroxypyridine/2-Pyridone Platform 5
1.2.2 Complementary Hydrogen Bonding for the Construction of Heterodimeric Self-assembling Ligands 9
1.3 Asymmetric Hydrogenation 13
1.3.1 P-chiral Self-assembly Ligands in Asymmetric Hydrogenation 13
1.3.2 Inducing Axial Chirality in a Supramolecular Catalyst 14
1.4 Other Catalytic Applications 17
1.4.1 Hydration of Alkynes 17
1.4.2 Hydration of Nitriles 19
1.4.3 Allylic Substitution with Allylic Alcohols 20
1.4.4 Hydrocyanation 20
1.5 Concluding Remarks 21
References 22

2 Self-Assembled Bidentate Ligands in Transition Metal Catalysis; From Fundamental Invention to Commercial Application 27
Alexander M. Kluwer, Xavier Caumes, and Joost N. H. Reek

2.1 Introduction 27
2.2 Metal-Ligand Interactions, the SUPRAphos Library 28

2.3	Supramolecular Bidentate Ligands Based on Hydrogen Bonds, a Toolbox for Evolutionary Catalyst Design	30
2.4	Formation of Supramolecular Pincer-Type Complexes	34
2.5	From a Supramolecular Bidentate Ligand to a Catalyst with Substrate Pre-organization	36
2.6	Outlook	37
	References	38

Part II Self-Assembled Nanostructures and Multi-component Assemblies 41

3	Assembled Ionic Molecular Catalysts and Ligands 43
	<i>Kohsuke Ohmatsu, Daisuke Uraguchi, and Takashi Ooi</i>
3.1	Introduction 43
3.2	Concept of Ion-Paired Chiral Ligand 44
3.2.1	Design and Synthesis of Ion-Paired Chiral Ligand 45
3.2.2	Application of Ion-Paired Chiral Ligand for Palladium-Catalyzed Asymmetric Allylations 45
3.2.3	<i>In situ</i> Generation of Ion-Paired Chiral Ligands and Their Combinatorial Screening 46
3.3	Hydrogen-Bond-Assisted Ion-Pairing for Supramolecule Formation 47
3.3.1	Discovery of Supramolecular Ion-Pair Catalysis 48
3.3.2	Supramolecular Ion-Pair Catalysis for Michael Addition of 2-Unsubstituted Azlactone to Nitroolefins 50
3.4	Conclusion 51
	References 51
4	Self-amplification of Enantioselectivity in Asymmetric Catalysis by Supramolecular Recognition and Stereodynamics 55
	<i>Oliver Trapp</i>
4.1	Introduction 55
4.2	Design of an Enantioselective Self-amplifying Catalyst Based on Noncovalent Product–Catalyst Interactions 57
4.3	The Stereodynamics of the Ligand Core 57
4.4	Design of Product–Catalyst Adducts and Catalyst Synthesis 59
4.5	Noncovalent Interaction Studies via NMR Spectroscopy 61
4.6	Self-amplifying Hydrogenation of 3,5-DNB- Δ Ala-OEt 63
4.7	Concluding Remarks 64
	Acknowledgments 64
	References 64

5	Interlocked Molecules in Enantioselective Catalysis	69
	<i>Carel Kwamen and Jochen Niemeyer</i>	
5.1	Introduction	69
5.2	Rotaxanes in Enantioselective Catalysis	70
5.3	Catenanes in Enantioselective Catalysis	75
5.4	Molecular Knots in Enantioselective Catalysis	77
5.5	Conclusion	78
	References	78
6	Catalytic Supramolecular Gels	81
	<i>Beatriz Escuder</i>	
6.1	Introduction	81
6.2	Catalytic LMWGs	82
6.3	LMWGs in Organocatalysis	82
6.4	LMWGs in Metallocatalysis	86
6.5	Multicomponent Supramolecular Materials Involving Catalytic LMWGs	87
6.6	Concluding Remarks	89
	Acknowledgments	90
	References	90
7	Supramolecular Helical Catalysts	93
	<i>Laurent Bouteiller and Matthieu Raynal</i>	
7.1	Introduction	93
7.2	Concept: Induction of Chirality to Metal Centers Connected to Supramolecular Helices	94
7.3	Amplification of Chirality in Two-Component Supramolecular Helical Catalysts	97
7.4	Amplification of Chirality in Three-Component Helical Catalysts	98
7.5	Switchable Asymmetric Catalysis by Reversible Assembly of Helical Catalysts	100
7.6	Dual Stereocontrol of an Asymmetric Reaction by Switchable Helical Catalysts	101
7.7	Concluding Remarks	103
	Acknowledgments	104
	References	104
8	Self-Assembled Multi-Component Supramolecular Catalysts for Asymmetric Reactions	107
	<i>Guanghui Ouyang, Jian Jiang, and Minghua Liu</i>	
	References	114

Part III Ligand–Substrate Interactions 117

9 Harnessing Ligand–Substrate Non-covalent Interactions for Control of Site-Selectivity in Transition Metal-Catalyzed C–H Activation and Cross-Coupling 119
Robert J. Phipps

9.1 Introduction 119
9.2 C–H Borylation 120
9.3 Cross-Coupling 126
9.4 Concluding Remarks 128
Acknowledgments 129
References 129

10 Supramolecular Interactions in Distal C–H Activation of (Hetero)arenes 133
Jyoti P. Biswas and Debabrata Maiti

10.1 Introduction 133
10.2 Distal C–H Activation of Arenes 133
10.2.1 *meta* C–H Activation 134
10.2.2 *para* C–H Activation 136
10.3 Distal C–H Activation of Heterocycles 137
10.3.1 Tridentate Approach 138
10.3.2 Bidentate Approach 140
10.4 Conclusion 141
Acknowledgments 141
References 141

11 Transition-Metal-Catalyzed, Site- and Enantioselective Oxygen and Nitrogen Transfer Enabled by Lactam Hydrogen Bonds 145
Finn Burg and Thorsten Bach

11.1 Chiral Lactams as Hydrogen Bonding Sites for Enantioselective Catalysis 145
11.2 Enantioselective Addition to Olefins 147
11.3 Enantioselective C(sp³)-H Functionalization 150
11.4 Enantioselective Oxidation of Sulfur Centers 156
11.5 Concluding Remarks 157
Acknowledgments 158
References 158

12 Supramolecular Substrate Orientation as Strategy to Control Selectivity in Transition Metal Catalysis 161
Joost N.H. Reek and Bas de Bruin

12.1 Introduction 161
12.2 Asymmetric Hydrogenation 161

12.3	Substrate Orientation in Hydroformylation Catalysis	164
12.4	Substrate Orientation in C—H Borylation	168
12.5	Second Coordination Sphere Control in Enantioselective Cobalt-catalyzed Carbene and Nitrene Transfer Reactions	170
12.5.1	Applications	172
12.6	Concluding Remarks and Outlook	174
	References	174
13	Phosphine Ligands with Acylguanidinium Groups as Substrate-directing Unit	179
	<i>Felix Bauer and Bernhard Breit</i>	
13.1	Introduction	179
13.2	Hydroformylation of Alkenoic and Alkynoic Acids	179
13.3	Aldehyde Reduction and Tandem Hydroformylation–Hydrogenation	188
13.4	Concluding Remarks	197
	References	198
14	Chemical Reactions Controlled By Remote Zn⁺⁺–N Interactions Between Substrates and Catalysts	201
	<i>Jonathan Trouvé and Rafael Gramage-Doria</i>	
14.1	Introduction	201
14.2	Organic Reactions	202
14.3	Transition Metal Catalysis	204
14.4	Conclusion	207
	Acknowledgments	207
	References	207
Part IV Catalysis Promoted by Discrete Cages, Capsules, and Other Confined Environments 211		
15	Artificial Enzymes Created Through Molecular Imprinting of Cross-Linked Micelles	213
	<i>Yan Zhao</i>	
15.1	Introduction	213
15.2	Surface-Cross-Linked Micelles (SCMs)	213
15.3	Molecularly Imprinted Nanoparticles (MINPs) via Double Cross-Linking of Micelles	215
15.4	MINP-Based Artificial Esterase	217
15.5	MINP-Based Artificial Glycosidase	219
15.6	MINP-Based Artificial Enzymes for Asymmetric Catalysis and Tandem Catalysis	223
15.7	Concluding Remarks	225
	Acknowledgments	226
	References	226

16	Bioinspired Catalysis Using Innately Polarized Pd₂L₄ Coordination Cages	229
	<i>Paul J. Lusby</i>	
16.1	Introduction	229
16.2	A Coordination-Cage Host–Guest Method Based on Polar Interactions	229
16.3	From Guest Binding to Catalysis; an Artificial “Diels–Alderase”	231
16.4	Base-Free Michael Addition Catalysis	235
16.5	Turning Cage-Catalysis Inside Out	238
16.6	Concluding Remarks	239
	Acknowledgments	239
	References	239
17	Supramolecular Catalysis with a Cubic Coordination Cage: Contributions from Cavity and External-Surface Binding	241
	<i>Christopher G. P. Taylor and Michael D. Ward</i>	
17.1	Introduction: The Host Cage and Its Structure	241
17.2	Binding of Organic Guests in the Central Cavity in Water	242
17.3	Surface Binding of Anions	244
17.4	The Paradigm: Catalysis of the Kemp Elimination	245
17.5	Effects of Anion Accumulation Around the Surface: Autocatalysis	247
17.6	Catalysis with Noncavity-Bound Guests: Phosphate Ester Hydrolysis and an Aldol Condensation	249
17.7	Conclusion	251
	Acknowledgments	252
	References	252
18	Transition Metal Catalysis in Confined Spaces	255
	<i>Joost N.H. Reek and Sonja Pullen</i>	
18.1	Introduction	255
18.2	Template Ligand Strategies for Encapsulation of Transition Metal Catalysts	255
18.3	Catalyst Encapsulation Strategies for Solar Fuel-Related Reactions	258
18.3.1	Molecular Cages for Water Oxidation Catalysis	260
18.3.2	Molecular Cages for Proton Reduction Catalysis	261
18.3.3	Proton Reduction Catalysis Using MOFs	266
18.4	Concluding Remarks and Outlook	268
	References	268
19	Catalysis by Metal–Organic Cages: A Computational Perspective	271
	<i>Giuseppe Sciortino, Gantulga Norjmaa, Jean Didier Maréchal, and Gregori Ujaque</i>	
19.1	Introduction	271
19.2	Looking for a Robust Computational Framework to Study MOCs	272

19.3	Applications of Modeling to Confined Catalysis	274
19.4	Future Directions	281
	References	281
20	<i>N</i>-heterocyclic Carbene (NHC)-Capped Cyclodextrins for Cavity-Controlled Catalysis	<i>287</i>
	<i>Sylvain Roland and Matthieu Sollogoub</i>	
20.1	Introduction: NHC-Capped Cyclodextrin Metal Complexes	287
20.2	Orientation of Cyclization Reactions – Five vs. Six-Membered Cycle	289
20.3	Control of Regioselectivity	291
20.4	Control of Enantioselectivity by the CD Chiral Cavity	293
20.5	Substrate Selectivity	296
20.6	Protection of Metal Centers and Promotion of Reactive Species	297
20.7	Concluding Remarks	299
	Acknowledgments	299
	References	299
21	Supramolecular Catalysis by Metallohosts Based on Glycoluril	<i>303</i>
	<i>Jeroen P.J. Bruekers, Johannes A.A.W. Elemans, and Roeland J.M. Nolte</i>	
21.1	Introduction	303
21.2	Rhodium-Based Catalytic Baskets	304
21.3	Copper-Based Catalytic Baskets	306
21.4	Porphyrin Cage Catalysts	307
21.4.1	Epoxidation of Low-Molecular-Weight Alkenes	307
21.4.2	Epoxidation of Polymeric Alkenes	311
21.4.3	Carbenoid Transfer Reactions with α -Diazoesters	315
21.5	Outlook	316
	Acknowledgments	317
	References	317
22	Catalysis Inside the Hexameric Resorcinarene Capsule: Toward Addressing Current Challenges in Synthetic Organic Chemistry	<i>321</i>
	<i>Leonidas-Dimitrios Syntrivanis and Konrad Tiefenbacher</i>	
22.1	Introduction	321
22.2	Background	321
22.3	Application to Terpene Cyclization	323
22.4	Elucidating the Prerequisites for Catalytic Activity Inside the Resorcinarene Capsule	328
22.5	Further Applications of Capsule I as Catalyst	329
22.6	Concluding Remarks	330
	Acknowledgments	331
	References	331

23	Supramolecular Organocatalysis Within the Nanospace of Resorcinarene Capsule	335
	<i>Carmine Gaeta, Carmen Talotta, Margherita De Rosa, Annunziata Soriente, Antonio Rescifina, and Placido Neri</i>	
23.1	Introduction	335
23.2	The Hexameric Resorcinarene Capsule	337
23.3	The Hexameric Capsule as H-bonding Organocatalyst	338
23.4	The Hexameric Capsule as Brønsted Acid Organocatalyst	339
23.5	Iminium Catalysis with a Coencapsulated Cocatalyst	341
23.6	Halogen-bond (XB) Catalysis with a Coencapsulated Cocatalyst	343
23.7	Concluding Remarks	343
	Acknowledgment	344
	References	344
24	Resorcin[4]arene Hexamer: From Nanocontainer to Nanocatalyst	347
	<i>Giorgio Strukul, Fabrizio Fabris, and Alessandro Scarsø</i>	
24.1	Introduction	347
24.2	Resorcinarene Capsule as Nanoreactor	348
24.3	Resorcin[4]arene Capsule as Nanocatalyst	352
24.4	Concluding Remarks	357
	Acknowledgments	358
	References	358
Part V Supramolecular Organocatalysis and Non-classical Interactions 361		
25	The Aryl-Pyrrolidine-<i>tert</i>-Leucine Motif as a New Privileged Chiral Scaffold: The Role of Noncovalent Stabilizing Interactions	363
	<i>Daniel A. Strassfeld and Eric N. Jacobsen</i>	
25.1	Introduction	363
25.2	Foundational Studies	364
25.3	Development of the Aryl-Pyrrolidino- <i>tert</i> -Leucine Catalyst Motif	366
25.4	Scope of Enantioselective Reactions and Mechanisms Promoted Effectively by Aryl-Pyrrolidine- <i>tert</i> -Leucine HBD Catalysts	368
25.5	Mechanisms of Enantioinduction by Aryl-Pyrrolidine- <i>tert</i> -Leucine-H-Bond-Donor Catalysts: Case Studies	374
25.6	Concluding Remarks	380
	Acknowledgments	381
	References	382

26	Chiral Triazole Foldamers in Enantioselective Anion-Binding Catalysis	387
	<i>Alica C. Keuper and Olga García Mancheño</i>	
26.1	Introduction	387
26.2	Triazoles as Anion Receptors	387
26.3	Design of Foldamer Triazoles as Hydrogen Bond Donors for Anion-Binding Catalysis	388
26.4	Anion-Binding-Catalyzed Enantioselective Reissert-Type Reaction with Silylketene Acetals	389
26.5	Reaction with Different Nucleophiles	391
26.6	Nucleophilic Dearomatization of Pyrylium Derivatives	392
26.7	Folding and Cooperative Multi-Recognition Mechanism	393
26.8	Design of Catalytic Transformations Based on Anion-Template Strategies	394
26.9	Concluding Remarks	395
	Acknowledgments	396
	References	396
27	Supramolecular Catalysis via Organic Solids: Templates to Mechanochemistry to Cascades	401
	<i>Shweta P. Yelgaonkar and Leonard R. MacGillivray</i>	
27.1	Template Approach for [2+2] Photocycloadditions	401
27.2	State of Mechanochemistry	402
27.2.1	Our Studies in Mechanochemistry	403
27.3	Organic Catalysis and Mechanochemistry	403
27.3.1	Supramolecular Catalysis by Ditopic Receptors	404
27.3.2	Our Studies in Supramolecular Catalysis and Mechanochemistry	405
27.4	Cascade Reactions and Mechanochemistry	407
27.5	Concluding Remarks	409
	Acknowledgments	409
	References	409
28	Exploration of Halogen Bonding for the Catalysis of Organic Reactions	413
	<i>Revannath L. Sutar and Stefan M. Huber</i>	
28.1	Introduction	413
28.2	Halide Abstraction Reactions	415
28.3	Activation of Organic Functional Groups	418
28.4	Activation of a Metal–Halogen Bond	421
28.5	Conclusion	421
	References	422

29	Chalcogen-Bonding Catalysis	427
	<i>Wei Wang and Yao Wang</i>	
29.1	Introduction	427
29.2	Challenges in Chalcogen-Bonding Catalysis	428
29.3	Discovery of Efficient Chalcogen-Bonding Catalysts	428
29.4	Chalcogen–Chalcogen Bonding Catalysis	431
29.5	Dual Chalcogen–Chalcogen Bonding Catalysis	433
29.6	Conclusion Remarks	436
	Acknowledgments	437
	References	437
30	Asymmetric Supramolecular Organocatalysis: The Fourth Pillar of Catalysis	441
	<i>Kengadarane Anebouselvy, Kodambahalli S. Shruthi, and Dhevalapally B. Ramachary</i>	
30.1	Introduction	441
30.2	Asymmetric Michael Additions	442
30.3	Concluding Remarks	448
	Acknowledgments	448
	References	448
Part VI Supramolecular Catalysis in Water 451		
31	Metal Catalysis in Micellar Media	453
	<i>Giorgio Strukul, Fabrizio Fabris, and Alessandro Scarsö</i>	
31.1	Introduction	453
31.2	Oxidation Reactions	454
31.3	C–C and C–X Bond Forming Reactions	457
31.4	Metal Nanoparticles in Micellar Media	461
31.5	Catalyst Surfactant Interactions	463
	Acknowledgments	465
	References	465
32	Surfactant Assemblies as Nanoreactors for Organic Transformations	467
	<i>Margery Cortes-Clerget, Joseph R.A. Kincaid, Nnamdi Akporji, and Bruce H. Lipshutz</i>	
32.1	Introduction	467
32.2	Micellar Catalysis: Concepts	468
32.3	Ligand Design	471
32.4	The “Nano-to-Nano” Effect	475
32.5	Reservoir Effect	476
32.6	Access to Opportunities for Telescoping Sequences	478
32.7	Industrial Applications	481

32.8	Conclusions	483
	References	484
33	Compartmentalized Polymers for Catalysis in Aqueous Media	489
	<i>Fabian Eisenreich and Anja R.A. Palmans</i>	
33.1	Introduction	489
33.2	Folding a Polymer Chain in Water into a Compact Structure	491
33.3	Polymer-Supported Ru(II) Catalysis in Water	495
33.4	Polymer-Supported Cu(I) and Pd(II) Catalysis in Water	496
33.5	Polymer-Supported Organocatalysis in Water	498
33.6	Polymer-Supported Photocatalysis in Water	500
33.7	Outlook and Conclusions	501
	Acknowledgments	502
	References	502
34	Phosphines Modified by Cyclodextrins for Supramolecular Catalysis in Water	507
	<i>Sébastien Tilloy and Eric Monflier</i>	
34.1	Introduction	507
34.2	Synthesis and Properties of CD-Phosphine 1 (CD-P-1)	508
34.3	Synthesis and Properties of CD-Phosphine 2 (CD-P-2)	510
34.4	Synthesis and Properties of CD-Phosphine 3 (CD-P-3)	512
34.5	Synthesis and Properties of CD-Phosphine 4 (CD-P-4)	513
34.6	Concluding Remarks	514
	References	515
35	Water-Soluble Yoctoliter Reaction Flasks	519
	<i>Yahya A. Ismaiel and Bruce C. Gibb</i>	
35.1	Introduction	519
35.2	Deep-Cavity Cavitands	520
35.3	The Thermodynamic and Kinetic Features of the Capsular Complexes	520
35.4	Assembly State of OA 1 and TEMOA 2 and Guest Packing Motifs Within	521
35.5	Photochemistry	523
35.6	Thermal Reactions	528
35.7	Summary and Conclusions	533
	Acknowledgments	533
	References	533
36	Chemical Catalyst-Promoted Regioselective Histone Acylation	537
	<i>Yuki Yamanashi and Motomu Kanai</i>	
36.1	Introduction	537
36.2	Chemical Catalyst-Mediated Synthetic Epigenetics	537

36.3	Supramolecular Catalyst Strategy for Protein Modification	538
36.4	Supramolecular Catalyst Strategy for Histone Acetylation In Vitro	538
36.5	Catalyst-Promoted Selective Acylation Targeting Proteins in Living Cells	540
36.6	Chemical Catalyst-Promoted Regioselective Histone Acylation in Living Cells	543
36.7	Concluding Remarks	544
	References	544
37	Protein–Substrate Supramolecular Interactions for the Shape-Selective Hydroformylation of Long-Chain α-Olefins	547
	<i>Peter J. Deuss and Amanda G. Jarvis</i>	
37.1	Introduction	547
37.1.1	Introduction on Aqueous Phase Hydroformylation of Long-Chain α-Olefins	547
37.1.2	Shape Selective Artificial Metalloenzyme Catalyst Design	549
37.2	Design of Protein Templates for Shape-Selective ArMs	551
37.3	Introduction of a Metal–Ligand Environment into SCP-2L	552
37.4	SCP-2L as a Catalytic Scaffold	553
37.5	Phosphine Modification of Proteins	554
37.6	Application in Biphasic Hydroformylation	555
37.7	Structural Studies on the Rhodium Hydroformylases	557
37.8	Concluding Remarks	558
	Acknowledgments	558
	References	559
38	Supramolecular Assembly of DNA- and Protein-Based Artificial Metalloenzymes	561
	<i>Gerard Roelfes</i>	
38.1	Introduction	561
38.2	DNA-Based Artificial Metalloenzymes	562
38.3	Protein-Based Artificial Metalloenzymes	564
38.4	Synergistic Catalysis with Artificial Metalloenzymes	567
38.5	In Vivo Assembly and Application of LmrR-Based Artificial Metalloenzymes	568
38.6	Conclusions	569
	References	569

Part VII Supramolecular Allosteric Catalysts and Replicators 573

39	Switchable Catalysis Using Allosteric Effects 575
	<i>Michael Schmittel</i>
39.1	Introduction 575
39.2	Allosteric Regulation at Zinc Porphyrin Stations by Catalyst Release 576
39.3	Allosteric Regulation of Catalysis at Copper(I) Sites 580
39.4	Dynamic Allosteric Regulation of Catalysis 583
39.5	The Future: From Allosteric Regulation of Catalysis in a Network to Smart and Autonomous Mixtures 585
39.6	Concluding Remarks 586
	Acknowledgments 586
	References 587
40	Supramolecularly Regulated Enantioselective Catalysts 591
	<i>Anton Vidal-Ferran</i>
40.1	Introduction 591
40.2	Seminal Work 592
40.3	Supramolecular Regulation of a Preformed Enantioselective Catalyst 593
40.4	Supramolecular Regulation of a Prochiral Ligand or Catalyst 597
40.5	Concluding Remarks 600
	Acknowledgments 601
	References 601
41	Emergent Catalysis by Self-Replicating Molecules 605
	<i>Kai Liu, Jim Ottelé, and Sijbren Otto</i>
41.1	Introduction 605
41.2	Implementation of Organocatalysis in Self-Replicating Systems 607
41.3	The Implementation of Photocatalysis in Self-Replicating Systems 610
41.4	Conclusions and Outlook 612
	References 612
	Index 615