

Contents

Foreword *xiii*

Preface *xvii*

1	Industrial Milestones in Organometallic Chemistry	1
	<i>Ben M. Gardner, Carin C.C. Johansson Seechurn, and Thomas J. Colacot</i>	
1.1	Definition of Organometallic and Metal–Organic Compounds	1
1.1.1	Applications and Key Reactivity	1
1.1.1.1	Electronic Applications	1
1.1.1.2	Polymers	2
1.1.1.3	Organic Synthesis	2
1.2	Industrial Process Considerations	7
1.3	Brief Notes on the Historical Development of Organometallic Chemistry for Organic Synthesis Applications Pertaining to the Contents of this Book	8
1.3.1	Synthesis of Stoichiometric Organometallic Reagents	9
1.3.1.1	Conventional Batch Synthesis	9
1.3.1.2	Organometallics in Flow	10
1.3.2	Cross-coupling Reactions	10
1.3.2.1	C–H Bond Activation	12
1.3.2.2	Carbonylation	13
1.3.2.3	Catalysis in Water – Micellar Catalysis	13
1.3.3	Hydrogenation Reactions	14
1.3.4	Olefin Formation Reactions	15
1.3.4.1	Wittig Reaction	15
1.3.4.2	Metathesis Reactions	15
1.3.4.3	Dehydrative Decarbonylation	16
1.3.4.4	Olefins as Starting Materials	16
1.3.5	Poly- or Oligomerization Processes	17
1.3.6	Photoredox Catalysis for Organic Synthesis	17
1.4	Conclusion and Outlook	17
	Biography	18
	References	19

2	Design, Development, and Execution of a Continuous-flow-Enabled API Manufacturing Route	23
	<i>Alison C. Brewer, Philip C. Hoffman, Timothy D. White, Yu Lu, Laura McKee, Moussa Boukerche, Michael E. Kobierski, Nessa Mullane, Mark Pietz, Charles A. Alt, Jim R. Stout, Paul K. Milenbaugh, and Joseph R. Martinelli</i>	
2.1	Continuous-flow-Enabled Synthetic Strategy	25
2.2	Design and Scale-up of Chan–Lam Coupling	28
2.2.1	Development of Homogeneous Conditions	31
2.2.2	Application of a Platform Technology to Aerobic Oxidation	32
2.2.3	Optimization of Reaction and Workup Parameters	35
2.2.4	Safety Considerations for Aerobic Oxidation on Scale	37
2.2.5	Continuous Scale-up and Manufacturing	38
2.3	Design and Scale-up of a Buchwald–Hartwig Cross-coupling	42
2.3.1	Initial Screening	43
2.3.2	Synthesis and Isolation of Pd(dba)DPEPhos Precatalyst	45
2.3.3	Workup Procedure, Metal Removal, and Crystallization	46
2.3.4	Scale-up and Manufacturing	48
2.4	Impurity Control	48
2.4.1	Solubility and Impurity Spiking Studies	50
2.5	Conclusions	54
	Biography	54
	References	58
3	Continuous Manufacturing as an Enabling Technology for Low-Temperature Organometallic Chemistry	61
	<i>Andreas Hafner and Joerg Sedelmeier</i>	
3.1	Introduction	61
3.2	Organo-Li and Mg Processes in Flow Mode	62
3.2.1	Technological Advantages of Flow Technology Compared to Traditional Batch Operation	62
3.2.2	Temperature Profile of Continuous Flow Reactions	64
3.2.3	Flash Chemistry: Functional Group Tolerance	65
3.2.4	Flash Chemistry: Selectivity	66
3.2.5	Flash Chemistry: Stoichiometry and Chemoselectivity	67
3.3	Continuous Flow Technology	69
3.3.1	Clogging as a Major Hurdle in Flow Chemistry	71
3.3.2	Start-up and Shutdown Operation	72
3.3.3	Material of Construction	72
3.3.4	Safety Concept and Emergency Strategies	73
3.4	Development of a Flow Process	73
3.4.1	Screening Phase: Feasibility Study	74
3.4.2	Process Development Phase: Extended Evaluations Including Technical Feasibility	75
3.5	Literature Examples: Flow Processes on Multi 100 g Scale	76
3.5.1	Manufacture of Verubecestat (MK-8931)	77
3.5.2	Manufacture of Edovoxetine	77
3.5.3	Scale-up of Highly Reactive Aryl Lithium Chemistry	80

3.5.4	Synthesis of Bromomethyltrifluoroborates in Continuous Flow Mode	81
3.5.5	Two-Step Synthesis Toward Boronic Acids	82
3.5.6	Reaction Sequence Toward a Highly Substituted Benzoxazole Building Block	84
3.6	Conclusion and Future Prospects	86
	Biography	86
	References	87
4	Development of a Nickel-Catalyzed Enantioselective Mizoroki–Heck Coupling	<i>91</i>
	<i>Jean-Nicolas Desrosiers and Chris H. Senanayake</i>	
4.1	Introduction	91
4.1.1	Nonprecious Metal Catalysis Advantages for Industry	91
4.1.2	Mizoroki–Heck Couplings in Industry with Palladium	92
4.1.3	Emergence of Nickel-Catalyzed Mizoroki–Heck Couplings	93
4.1.4	Enantioselective Nickel-Catalyzed Couplings	94
4.1.5	Synthesis of Oxindoles via Mizoroki–Heck Cyclizations	96
4.2	Development of a Nickel-Catalyzed Heck Cyclization to Generate Oxindoles with Quaternary Stereogenic Centers	97
4.2.1	Precedents and Challenges	97
4.2.2	Optimization of Reducing Agent and Base	97
4.2.3	Ligand Screening	98
4.2.4	Impact of Aryl Electrophile and of Stereochemistry of Alkene Moiety	100
4.2.5	Exploration of the Substrate Scope	102
4.2.6	Limitations of the Methodology	104
4.2.7	Mechanistic Considerations	104
4.3	Development of First Enantioselective Nickel-Catalyzed Heck Coupling	107
4.3.1	Ligand Screening	107
4.3.2	Impact of Alkene Stereochemistry	107
4.3.3	Neutral vs Cationic Pathways	108
4.3.4	Nickel Precatalyst Complex Synthesis	109
4.3.5	Exploration of the Substrate Scope	110
4.3.6	Mechanistic Studies	110
4.4	Conclusions	113
	Biography	114
	References	115
5	Development of Iron-Catalyzed Kumada Cross-coupling for the Large-Scale Production of Aliskiren Intermediate	<i>121</i>
	<i>Srinivas Achanta, Debjit Basu, Uday K. Neelam, Rajeev R. Budhdev, Apurba Bhattacharya, and Rakeshwar Bandichhor</i>	
5.1	Introduction	121
5.2	Optimization of Grade and Equivalents of Mg Metal	123

5.3	Optimization of Equivalents of 1,2-Dibromoethane	123
5.4	Effect of Solvent Concentration on Preparation of Grignard Reagent and Kumada–Corriu Coupling	124
5.5	Effect of Alkyl Chloride 3 Addition Time on the Grignard Reagent Preparation	125
5.6	Stability of Grignard Reagent at 0–5 °C	125
5.7	Iron-Catalyzed Cross-coupling Reaction	127
5.8	Optimization of Equivalents of NMP and Fe(acac) ₃	129
5.9	Optimization of Equivalents of Substrate 4 and Its Rate of Addition	129
5.10	Execution at Pilot Scale and Scale-up Issues	129
5.11	Agitated Thin Film Evaporator (ATFE) for Purification of 2	131
5.12	Conclusion	132
	Acknowledgments	133
	Biography	133
	References	135
6	Development and Scale-Up of a Palladium-Catalyzed Intramolecular Direct Arylation in the Commercial Synthesis of Beclabuvir	<i>137</i>
	<i>Collin Chan, Albert J. DelMonte, Chao Hang, Yi Hsiao, and Eric M. Simmons</i>	
6.1	Introduction	137
6.2	KOAc/DMAc Process	141
6.3	TMAOAc/DMF Process	141
6.4	TMAOAc/DMAc Process	149
6.4.1	Cyclization Reaction	151
6.4.2	Mechanistic Understanding of the Cyclization Reaction and Impurity Formation	159
6.4.3	Hydrolysis and Workup	162
6.4.4	Crystallization and Drying	164
6.5	Conclusion	167
	Biography	168
	References	169
7	Ruthenium-Catalyzed C—H Activated C—C/N/O Bond Formation Reactions for the Practical Synthesis of Heterocycles and Pharmaceutical Agents	<i>171</i>
	<i>Anita Mehta, Naresh Kumar, and Biswajit Saha</i>	
7.1	Introduction	171
7.2	C—H Activation Followed by C—C Bond Formation	172
7.2.1	C—H Activation Followed by C—C Bond Formation: Biaryl/Heterobiaryl Synthesis in Organic Solvents	172
7.2.2	C—H Activation Followed by C—C Bond Formation: Biaryl/Heterobiaryl Synthesis in Green Solvents	181
7.3	Alkyl/Acyl/Alkenyl Substitution on Heterocycles	185

7.4	C—H Activation Followed by C—O/N Bond Formation: Heterocycle Synthesis	187
7.4.1	C—H Activation Followed by C—O/N Bond Formation: Heterocycle Synthesis in Organic Solvents	187
7.4.2	C—H Activation Followed by C—O and C—N Bond Formation: Heterocycle Synthesis in Green Solvents	189
7.5	Conclusion	196
	Biography	197
	References	198
8	Cross-couplings in Water – A Better Way to Assemble New Bonds	203
	<i>Tharique N. Ansari, Fabrice Gallou, and Sachin Handa</i>	
8.1	Introduction	203
8.2	Transition Metal Catalysis in Organic Solvents vs Micellar Catalysis	204
8.2.1	Micellization	205
8.2.2	Surfactant Solution – A Highly Organized Reaction Medium to Enhance Reaction Rate	206
8.2.3	Reaction Temperature	207
8.2.4	Size of Micelles	207
8.2.5	Nature of Catalyst	208
8.2.6	Increasing the Efficiency in Micellar Catalysis	209
8.2.7	Order of Addition	210
8.2.8	Product Precipitation or Extraction	211
8.2.9	Trace Metal in the Product	211
8.3	Highly Valuable Reactions in Water	212
8.3.1	Suzuki–Miyaura Couplings	212
8.3.2	Heck Couplings	217
8.3.3	Negishi Couplings	219
8.3.4	C—H Arylations	221
8.3.5	Aminations	225
8.3.6	Borylation	228
8.3.7	Arylation of Nitro Compounds	228
8.3.8	Adoption of Micellar Technology by Pharmaceutical Industry	229
8.4	Conclusions	234
	Biography	234
	References	235
9	Aspects of Homogeneous Hydrogenation from Industrial Research	239
	<i>Stephen Roseblade</i>	
9.1	Homogeneous Hydrogenation: A Brief Introduction	239
9.2	Catalyst Selection by Effective Screening Approaches	240
9.3	Considerations for Reaction Scale-up	244

9.4	Notes on Additive Effects	247
9.5	A Novel Approach to Aliskiren Using Asymmetric Hydrogenation as a Key Step	249
9.6	Efficient Chemoselective Aldehyde Hydrogenation	252
9.7	Closing Remarks/Summary	253
	Biography	255
	References	255
10	Latest Industrial Uses of Olefin Metathesis	259
	<i>John H. Phillips</i>	
10.1	Introduction	259
10.2	General Information	260
10.2.1	Non-ruthenium Catalysts	260
10.2.2	Ruthenium Catalysts	261
10.3	Industrial Uses	262
10.3.1	Ring-closing Metathesis (RCM)	262
10.3.2	Cross-metathesis (CM)	264
10.3.3	Ring-Opening Metathesis Polymerization (ROMP)	268
10.4	Reaction Considerations	270
10.4.1	Catalyst Choice	271
10.4.2	Catalyst Loading	273
10.4.3	Solvent	273
10.4.4	Reaction Concentration	273
10.4.5	Overall Handling	274
10.4.6	Application Guide and Availability	274
10.5	Troubleshooting	275
10.5.1	Catalyst Removal	275
10.5.2	Functional Group Tolerance	276
10.5.3	Substrate Purity	276
10.5.4	Catalyst Decomposition – Isomerization	277
10.6	Conclusion	277
	Biography	277
	References	278
11	Dehydrative Decarbonylation	283
	<i>Alex John</i>	
11.1	Introduction	283
11.2	Use of Sacrificial Anhydride and Catalytic Mechanism	285
11.3	Rh-, Pd-, and Ir-Catalysis	286
11.3.1	Early Studies	286
11.3.2	Recent Studies	289
11.4	Milder Temperatures	291
11.4.1	PdCl ₂ /XantPhos/(^t Bu) ₄ biphenol System	291
11.4.2	Well-Defined Pd-bis(phosphine) Precatalysts	294
11.5	Nickel and Iron Catalysis	295
11.6	Ester Decarbonylation	297
11.7	Synthetic Utility: α -Vinyl Carbonyl Compounds	299

11.8 Conclusions and Future Prospects 300
 Biography 300
 References 301

Index 305