Contents

Preface ---- V

Chapter 1
Analytical chemistry in biopharma —— 1
References — 8

Chapter	2
CHAPLE	~

definitio	ns —— 11
2.1	Mass measurements: stable isotopes, isotopic distributions,
	ionic and molecular masses, and mass resolution —— 11
2.2	Generation of macromolecular ions: matrix-assisted laser
	desorption/ionization (MALDI) and electrospray ionization
	(ESI) —— 16
2.3	Ion fragmentation: tandem mass spectrometry —— 22
2.4	Ion manipulation in electromagnetic fields: mass analyzers —— 26
2.4.1	Quadrupole mass filters and triple-quadrupole MS —— 27
2.4.2	Quadrupole (3-D) and linear ion traps —— 28
2.4.3	Time-of-flight MS —— 29
2.4.4	Fourier transform MS: ion cyclotron resonance and Orbitrap mass
	analyzers —— 30
2.4.5	Hybrid mass spectrometers —— 31

A brief overview of biological mass spectrometry: concepts and

Chapter 3

2.4.5

Characteriza	ation of covalent structure of protein therapeutics —— 37
2.1	Amine acid coguence analysis and sharestorization of coguence

References — 32

3.1	Amino acid sequence analysis and characterization of sequence
	variant types —— 37
3.1.1	Confirmation of the amino acid sequence of protein
	biopharmaceuticals by intact mass measurements — 37
3.1.2	Confirmation of the amino acid sequence of protein therapeutics
	by peptide mapping analysis —— 40
3.1.3	Confirmation of the primary sequence of protein therapeutics by
	top-down MS analysis —— 47
3.2	Characterization of enzymatic post-translational
	modifications —— 51
3.2.1	N-Glycosylation —— 53
3.2.2	O-Glycosylation —— 61
3.2.3	Disulfide bonds and disulfide scrambling —— 61
3.2.4	Other enzymatic PTMs —— 67

3.3	Characterization of non-enzymatic PIMS —— 69
3.3.1	Asparagine deamidation and aspartic acid isomerization — 70
3.3.2	Oxidation — 76
3.3.3	Lysine and N-terminal amine glycation —— 78
3.3.4	N-Terminal glutamate to pyroglutamate conversion —— 83
3.3.5	Protein backbone cleavage —— 84
3.4	"Designer" PTMs (chemical conjugation products) and methods
	of their characterization —— 84
3.4.1	Protein PEGylation and other protein-polymer conjugates 85
3.4.2	Protein-small-molecule drug conjugates —— 89
3.4.3	Protein-protein conjugates — 91
	References —— 91
Chapter 4	
Characteri	zation of higher order structure and protein interactions —— 101
4.1	Mass spectrometry and its place in the analytical toolbox used
	for higher order structure characterization of protein
	therapeutics —— 101
4.2	Native electrospray ionization MS —— 103
4.2.1	Protein ion charge state distributions: conformational integrity of
	monomeric proteins —— 103
4.2.2	Native mass spectrometry and non-covalent assemblies: protein
	quaternary structure and interactions of protein therapeutics
	with their targets and physiological partners —— 105
4.2.3	Native mass spectrometry of highly heterogeneous protein
	therapeutics —— 111
4.2.4	Can native MS be used to provide quantitative information on
	interactions between protein therapeutics and their targets? — 11
4.2.5	What needs to be considered at the planning stage and/or when
	analyzing the results of native MS measurements —— 118
4.3	Hydrogen deuterium exchange (HDX) MS —— 122
4.3.1	Global HDX MS measurements to monitor conformational
	integrity of protein therapeutics —— 122
4.3.2	Site-specific HDX MS measurements to identify instability hot
	spots —— 125
4.3.3	Site-specific HDX MS measurements to localize binding
	interfaces — 127
4.3.4	HDX MS to probe aggregation of protein therapeutics — 129
4.3.5	What needs to be considered at the planning stage and/or when
	analyzing the results of HDX MS measurements — 129
4.3.6	Spatial resolution in site-specific HDX MS measurements and
	methods to improve it —— 130

4.4	Covalent labeling methods —— 131
4.4.1	Chemical labeling and cross-linking: what limits their use in characterization of biopharmaceutical products? —— 132
4.4.2	Characterization of protein higher order structure with FPOP —— 133
4.5	An outlook for MS-based methods to probe higher order structure of protein therapeutics —— 135 References —— 136
Chapter	5
Biosimil	ars and comparability studies —— 145
5.1	Biogenerics or biosimilars? —— 145
5.2	MS-based characterization of the covalent structure in the
	biosimilarity assessments —— 147
5.3	MS-based characterization of the higher order structure in the
	biosimilarity assessments —— 152
5.4	MS-based characterization of the purity in biosimilarity
	assessments —— 155
	References —— 155
Chapter	6
Characte	erization of impurities in biopharmaceutical products —— 159
6.1	Product-related substances and impurities —— 159
6.2	Characterization of size variants of protein
	biopharmaceuticals —— 159
6.2.1	MS-based characterization of size variants under denaturing conditions —— 160
6.2.2	MS-based characterization of size variants under non-denaturing conditions —— 161
6.2.3	MS-based characterization of protein aggregates — 164
6.3	MS-based characterization of charge variants of protein biopharmaceuticals —— 165
6.4	MS-based characterization of homodimer impurities in bispecific
- • •	mAbs —— 169
6.5	Process-related impurities: MS-based characterization of host
	cell proteins —— 172
6.6	Viral and microbial contaminants: adventitious agents and
	bioburden —— 174
6.7	Formulation-related impurities —— 177
	References — 179

Chapter 7	
Quantitatio	n of protein therapeutics in biological samples —— 183
7.1	What motivates the development of MS-based quantitation
	strategies for protein therapeutics? —— 183
7.2	Quantitation with and without internal standards — 185
7.3	Protein quantitation using surrogate peptides —— 187
7.4	Protein quantitation at intact and subunit levels —— 192
7.5	Protein quantitation using metal tags —— 199
7.6	Biodistribution study of protein drugs by mass spectrometry
	imaging —— 200
	References —— 203
Chapter 8	
Non-proteir	biopharmaceuticals and related macromolecular drugs 207
8.1	Nucleic acid-based therapeutics: MS characterization of small
	nucleic acids (antisense therapeutics and aptamers) — 207
8.2	Macromolecular natural products: heparin and related
	medicines —— 215
8.3	MS in the analytical support of gene therapies —— 222
8.4	MS in the analytical support of cell-based therapies — 233
8.5	MS in characterization of modern vaccines — 233
8.6	MS in characterization of nanomedicines —— 235
	References —— 236
Chapter 9	
What is nex	ct? —— 243
9.1	The emerging role of mass spectrometry in process analytical
	technology —— 243
9.2	Mass spectrometry in personalized medicine — 247

Index —— 251

References — 249