Contents

1	\mathbf{Ind}	ustrial Robots in Contact-Free Operation	1
	1.1	Dynamic Analysis of Rigid Link Robots	1
	1.2	Kinematic Analysis of Rigid Link Robots	5
	1.3	Dynamic Analysis of Flexible-Link Robots	8
	1.4	Kinematic Analysis of Flexible-Link Robots	9
	1.5	Control of Rigid-Link Robots in Contact-Free Operation	13
	1.6	Control of Flexible-Link Robots in Contact-Free	
		Operation	14
		1.6.1 Inverse Dynamics Control of Flexible-Link Robots	14
		1.6.2 Energy-Based Control of Flexible Link Robots	16
		1.6.3 Adaptive Neural Control of Flexible Manipulators	19
		1.6.4 Approximation of the Flexible-Links Dynamics	22
	1.7	Simulation of Flexible-Link Robot Control	25
		1.7.1 Model-Based Control of Flexible-Link Robots	25
		1.7.2 Energy-Based Control	26
		1.7.3 Adaptive Neural Control	28
2	Ind	ustrial Robots in Compliance Tasks	31
_	2.1	Impedance Control	31
	2.2	Hybrid Position/Force Control	34
	2.2	2.2.1 Stiffness Identification in Compliance Tasks	35
		2.2.2 Application of Robot Hybrid Position/Force	00
		Control	37
	2.3		39
	4.0	2.3.1 Interaction with the Compliant Surface	39
		2.3.2 Force Control for Flexible-Link Robots	40
	2.4	Simulation of Force Control for Flexible-Link Robots	40
	7.4	- SIMBURLION OF POTCE CONTROL FOR PJEXIDIE-LINK RODOLS	4

XXII Contents

3	Mo		obots and Autonomous Vehicles	45
	3.1	Kiner	natic Analysis of Mobile Robots	45
	3.2	Contr	rol of Autonomous Ground Vehicles	46
		3.2.1	Differential Flatness for Finite Dimensional	
			Systems	47
		3.2.2	Flatness-Based Control of the Autonomous	
			Vehicle	48
	3.3	Kiner	natic and Dynamic Models of Surface Vessels	51
		3.3.1	A Generic Kinematic and Dynamic Ship Model	51
		3.3.2	Models of Current, Wind and Wave Forces	53
		3.3.3	Ship Model for the Dynamic Positioning Problem	54
		3.3.4	Ship Actuator Model	54
	3.4	Feedb	pack Linearization for Ship Dynamic Positioning	55
		3.4.1	Ship Control Using Dynamic Feedback	
			Linearization	55
		3.4.2	Estimation of the Unknown Additive	
			Disturbances	56
	3.5	Backs	stepping Control for the Ship Steering Problem	57
		3.5.1	The Ship Steering Problem	57
		3.5.2	Nonlinear Backstepping	59
		3.5.3	Automated Ship Steering Using Backstepping	
			Control	60
		3.5.4	Calculation of the SISO Backstepping Nonlinear	
			Controller	61
4			Control Methods for Industrial Systems	65
	4.1		tive Control of Industrial Systems with Full State	a =
			oack	65
		4.1.1	Problem Statement	65
		4.1.2	Transformation to a Regulation Problem	67
		4.1.3	Approximators of Unknown System Dynamics	68
		4.1.4	Lyapunov Stability Analysis in the Case of Full	
			State Feedback	69
	4.2		tive Control of Industrial Systems with Output	
			oack	71
		4.2.1	Transformation to a Regulation Problem	71
		4.2.2	Approximation of Unknown System Dynamics	72
		4.2.3	Lyapunov Stability Analysis in the Case of Output	
			Feedback	74
		4.2.4	Riccati Equation Coefficients and H_{∞} Control	
			Robustness	76
	4.3	Appli	cation to the Control of Electric Motors	77
		4.3.1	The DC Motor Model	77
		4.3.2	State Feedback Controller of the DC Motor Model	79
		4.3.3	State Feedback Controller for the DC Motor	81

Contents XXIII

		4.3.4 $4.3.5$	Output Feedback Controller for the DC Motor Application to the Field-Oriented Induction	85			
		1.0.0	Motor	89			
	$\frac{4.4}{4.5}$		cation to the Ship Steering Control Problemcation to the Stabilization of Electromechanical	93			
	4.0		ms	96			
5	Rol	bust C	ontrol Methods for Industrial Systems	101			
	5.1	Robus	st Control with Sliding-Mode Control Theory	101			
		5.1.1	Sliding-Mode Control	101			
		5.1.2	An Application Example of Sliding-Mode Control	104			
		5.1.3	Sliding-Mode Control with Boundary Layer	105			
	5.2	Robus	st Control with Interval Polynomials Theory	107			
		5.2.1	Basics of Kharitonov's Theory	107			
		5.2.2	Extremal Properties of Kharitonov Polynomials	109			
	5.3	Appli	cation to the Stabilization of Electric Power				
		System	ms	110			
		5.3.1	The Problem of Power System Stabilization	111			
		5.3.2	Transfer Function of the Single-Machine				
			Infinite-Bus Model	113			
		5.3.3	Kharitonov's Theory for Power System				
			Stabilization	113			
6	Filt	ering	and Estimation Methods for Industrial				
				119			
	6.1	Linear	r State Observers	119			
	6.2	The C	Continuous-Time Kalman Filter for Linear Models	120			
	6.3	The Discrete-Time Kalman Filter for Linear Systems 12					
	6.4						
	6.5						
	6.6	Partic	ele Filters	127			
		6.6.1	The Particle Approximation of Probability				
			Distributions	127			
		6.6.2	The Prediction Stage	128			
		6.6.3	The Correction Stage	128			
		6.6.4	The Resampling Stage	130			
		6.6.5	Approaches to the Implementation of Resampling	130			
	6.7	Applie	cation of Estimation Methods to Industrial Systems				
		Contr	ol	133			
		6.7.1	Kalman Filter-Based Control of Electric Motors	133			
		6.7.2	Extended Kalman Filter-Based Control of Electric				
			Motors	134			
		6.7.3	Unscented Kalman Filter-Based Control of Electric				
			Motors	137			
		6.7.4	Particle Filter-Based Control of Electric Motors	138			

XXIV Contents

7	Sen	ısor Fu	sion-Based Control for Industrial Systems	141
	7.1	Senso	r Fusion-Based Control of Industrial Robots	141
		7.1.1	The Sensor Fusion Problem	141
		7.1.2	Application of EKF and PF for Sensor Fusion	143
		7.1.3	Simulation of EKF and PF-Based Sensor Fusion	
			for Industrial Robot Control	145
	7.2	Senso	r Fusion-Based Control for Mobile Robots	155
		7.2.1	Simulation of EKF-Based Control for Mobile	
			Robots	155
		7.2.2	Simulation of Particle Filter-Based Mobile Robot	
			Control	161
		7.2.3	Simulation of EKF and PF-Based Parallel Parking	
			Control	162
		7.2.4	Performance Analysis of EKF and PF-Based	
			Mobile Robot Control	163
	7.3		r Fusion-Based Dynamic Ship Positioning	165
		7.3.1	EKF and PF-Based Sensor Fusion for the Ship	
			Model	165
		7.3.2	Simulation of EKF and PF-Based Ship Dynamic	
			Positioning	168
8	Dic	tnibut	ed Filtering and Estimation for Industrial	
G			ed Fintering and Estimation for Industrial	175
	8.1		Problem of Distributed State Estimation over Sensor	110
	0.1		orks	175
	8.2		buted Extended Kalman Filtering	177
	٠ . -	8.2.1	Calculation of Local Extended Kalman Filter	
		0.2.1	Estimations	177
		8.2.2	Extended Information Filtering for State Estimates	
		0.2.2	Fusion	180
	8.3	Distri	buted Sigma-Point Kalman Filtering	181
		8.3.1	Calculation of Local Unscented Kalman Filter	
			Estimations	181
		8.3.2	Unscented Information Filtering for State	
			Estimates Fusion	185
	8.4	Distri	buted Particle Filter	186
	0.2	8.4.1	Distributed Particle Filtering for State Estimation	100
		0.1	Fusion	186
		8.4.2	Fusion of the Local Probability Density Functions	188
	8.5		ation Tests	190
		8.5.1	Multi-UAV Control with Extended Information	
		3.3.4	Filtering	190
		8.5.2	Multi-UAV Control with Distributed Particle	
			Filtering	194

Contents XXV

9	Faul	lt Det	ection and Isolation for Industrial Systems	197
	9.1		Diagnosis with Statistical Methods	197
		9.1.1	Residual Generation through Nonlinear System	
			Modelling	197
		9.1.2	Determination of the Nonlinear Model's Structure	199
		9.1.3	ž S	202
	9.2	Fault	Threshold Selection with the Generalized Likelihood	
				203
		9.2.1	The Local Statistical Approach to Fault Diagnosis	203
		9.2.2	Fault Detection with the Local Statistical	
			Approach	204
		9.2.3	Fault Isolation with the Local Statistical	
			Approach	206
		9.2.4	Fault Threshold for Residuals of Unknown	
			Distribution	208
10	Ann	licatio	on of Fault Diagnosis to Industrial Systems	213
			Diagnosis of the Electric Power System	213
			Cascading Events in the Electric Power Grid	213
			Electric Power Systems Dynamics	216
			The Multi-area Multi-machine Electric Power	
			System	217
		10.1.4	Nonlinear Modeling of the Electric Power System	219
	10.2		Diagnosis Tests for the Electric Power System	221
			Parameters of the Nonlinear Power System Model	221
		10.2.2	Efficiency of the Fault Diagnosis Method	222
	10.3	Fault	Diagnosis of Electric Motors	224
		10.3.1	Failures in Rotating Electrical Machines	224
		10.3.2	Faults in the DC Motor Control Loop	225
		10.3.3	Residual Generation with the Use of Kalman	
			Filtering	225
		10.3.4	Residual Generation with the Use of Particle	
			Filtering	226
		10.3.5	Fault Diagnosis in Control Loops	228
11	Onti	imiant	ion Methods for Motion Planning of	
11	-		ot Systems	231
			buted Gradient for Motion Planning of Multi-robot	201
			ns	231
			Approaches to Multi-robot Motion Planning	231
			The Distributed Gradient Algorithm	233
			Kinematic Model of the Multi-robot System	233
			Cohesion of the Multi-robot System	235
			Convergence to the Goal Position	237
			Stability Analysis Using La Salle's Theorem	237
		-1.1.0	Dudding Illian, so doing and dulie of Illian in	

XXVI Contents

	11.2	Particle Swarm Theory for Multi-robot Motion Planning	239
		11.2.1 The Particle Swarm Theory	239
		11.2.2 Stability of the Particle Swarm Algorithm	240
	11.3	Evaluation Tests for the Stochastic Search Algorithms	242
		11.3.1 Convergence towards the Equilibrium	242
		11.3.2 Tuning of the Stochastic Search Algorithms	249
12		imization Methods for Target Tracking by	
		ti-robot Systems	253
	12.1	Distributed Motion Planning and Filtering in Multi-robot	
		Systems	253
		12.1.1 Target Tracking in Mobile Sensors Networks	253
		12.1.2 The Problem of Distributed Target Tracking	255
		12.1.3 Tracking of the Reference Path by the Target	257
		12.1.4 Convergence of the Multi-robot System to the	
		Target	258
	12.2	Simulation Tests	259
		12.2.1 Target Tracking Using Extended Information	
		Filtering	259
		12.2.2 Target Tracking Using Unscented Information	
		Filtering	262
13		imization Methods for Industrial Automation	269
	13.1	Multi-objective Optimization for Industrial Automation	269
		13.1.1 The Warehouse Replenishment Problem	269
		13.1.2 Multi-objective Optimization Problems	270
		13.1.3 The Pareto-optimality Principles	270
		13.1.4 Replenishment as a Pareto Optimization Problem	272
		13.1.5 Approaches to Obtain Pareto-optimal Solutions	272
		13.1.6 Graphical Representation of Pareto Optimal	
		Solution	275
	13.2	Genetic Algorithms in the Search of Pareto-optimal	
		Solutions	275
		13.2.1 Basic Principles of Evolutionary Algorithms	275
		13.2.2 Evolutionary Algorithms for Multi-objective	
		Optimization	276
		13.2.3 Control of Diversity of the Pareto-optimal	
		Solutions	277
		13.2.4 Genetic Algorithm Convergence to Pareto-optimal	
		Solutions	280
	13.3	A Genetic Algorithm for the Warehouse Replenishment	
		Task	280
		13.3.1 Constraints of Genetic Algorithms in Ordering	
		Problems	280

Contents XXVII

	13.3.2 The Genetic Algorithm for Replenishment	
	Optimization	282
	13.3.3 Mating Procedure	282
	13.3.4 Mutation Procedure	284
	13.3.5 Definition and Tuning of the Cost Function	285
	13.4 Results on Genetic Algorithm-Based Warehouse	
	Optimization	286
	13.4.1 Cost Function Tuning through Weights Selection	286
	13.4.2 Evaluation of the Genetic Algorithm Performance	291
7.4	Machine Leaving Matheda Co. Industrial Control	
14	Machine Learning Methods for Industrial Systems Control	293
	14.1 Model-Free Control of Flexible-Link Robots.	293 293
	14.1.1 Approaches for Model-Based Control of	293
	Flexible-Link Robots	293
	14.1.2 Approaches for Model-Free Control of Flexible-Link	293
	Robots	295
	14.1.3 Neural Control Using Multi-frequency Basis	293
	Functions	296
	14.2 Neural Control Using Wavelet Basis Functions	$\frac{290}{297}$
	14.2.1 Wavelet Frames	297
	14.2.1 Wavelet Frames 14.2.2 Dyadic Grid Scaling and Orthonormal Wavelet	291
	Transforms	298
	14.2.3 The Scaling Function and the Multi-resolution	230
	Representation	299
	14.2.4 Examples of Orthonormal Wavelets	300
	14.2.5 The Haar Wavelet	301
	14.3 Neural Networks Using Hermite Activation Functions	302
	14.3.1 Identification with Feed-Forward Neural Networks	302
	14.3.2 The Gauss-Hermite Series Expansion	$302 \\ 304$
	14.3.3 Neural Networks Using 2D Hermite Activation	304
	Functions	306
	14.4 Results on Flexible-Link Control and Vibrations	500
	Suppression	308
	14.4.1 The Flexible-Link Robot Model	308
	14.4.2 Control Using Hermite Polynomial-Based Neural	300
	Networks	308
	Networks	300
15	Machine Learning Methods for Industrial Systems	
	Fault Diagnosis	313
	15.1 Automata in Fault Diagnosis Tasks	313
	15.1.1 Fault Diagnosis of Systems with Event-Driven	
	Dynamics	313
	15.1.2 System Modelling with the Use of Finite	
	Automata	314

XXVIII Contents

	15.1	3 System Modelling with the Use of Fuzzy	
		Automata	316
	15.1	.4 Monitoring Signals with the Use of Fuzzy	
		Automata	317
	15.2 A F	ault Diagnosis Approach Based on Fuzzy Automata	318
	15.2	2.1 Generation of the Templates String	318
	15.2	2.2 Syntactic Analysis Using Fuzzy Automata	319
	15.2	2.3 Detection of Fault Patterns by the Fuzzy	
		Automata	322
	15.3 Sim	ulation Tests of Fault Diagnosis with Fuzzy	
	Aut	omata	324
16		tions of Machine Vision to Industrial Systems	327
		chine Vision and Imaging Transformations	327
	16.1	.1 Some Basic Transformations	327
	16.1	.2 Perspective Transformation	329
		.3 Camera Model	334
	16.1	.4 Camera Calibration	336
		.5 Stereo Imaging	337
		ti Cameras-Based Visual Servoing for Industrial	
		ots	339
		ributed Filtering for Sensorless Control	340
		Cameras	340
	16.3	.2 Robot's State Estimation through Distributed	
		Filtering	341
	16.4 Dist	ributed State Estimation Using the EIF	342
		.1 Local State Estimation with Extended Kalman	
		Filtering	342
	16.4	.2 State Estimation through a Nonlinear	
		Transformation	344
	16.4	.3 Derivative-Free Kalman Filtering for Nonlinear	
		Systems	345
		.4 Fusing Estimations from Local Distributed Filters	345
		.5 Calculation of the Aggregate State Estimation	347
	16.5 Sim	ulation Tests of the Vision-Based Control System	347
	16.5	.1 Dynamics and Control of the Robotic	
		Manipulator	347
	16.5	.2 Evaluation of Results on Vision-Based Control	348
	Reference	es	351
. .			277
Ind	AV		17/7