Contents

About the Editors XIIIList of Contributors XVPreface XIX

1	Chemical Engineering Science and Green Chemistry – The Challenge of Sustainability 1
	Alexei A. Lapkin
1.1	Sustainability Challenge for the Chemical Industry 1
1.2	From Green to Sustainable Chemistry 5
1.3	Chemical Engineering Science for Sustainability 7
1.4	Trends in Chemical Engineering Science 9
1.5	Topics Covered in This Book 11
	Acknowledgment 13
	References 13

Part One: Molecular Engineering of Materials, Reactions, and Processes 17

2	Recent Advances in the Molecular Engineering of Solvents		
	for Reactions 19		
	Eirini Siougkrou, Amparo Galindo, and Claire S. Adjiman		
2.1	Introduction 19		
2.2	Solvent Effects on Reactions 22		
2.3	Design or Selection of Solvents for Chemical Reactions	26	
2.3.1	Model-Based Screening Methods 27		
2.3.2	Generate-and-Test Methods 28		
2.3.3	Optimization-Based Methods 30		
2.3.4	Discussion 34		
2.4	A Case Study 35		
2.5	Conclusions 38		
	Acknowledgments 38		
	References 39		

۷۱	Contents	
	3	Hierarchically Structured Pt and Non-Pt-Based Electrocatalysts for PEM Fuel Cells 47
		Panagiotis Trogadas and Marc-Olivier Coppens
	3.1	Introduction 47
	3.2	Pure Hollow Pt Nanoparticles 49
	3.3	Hollow Pt Metal Alloys 51
	3.3.1	PtAu 52
	3.3.2	PtAg 53
	3.3.3	PtCo 56
	3.3.4	PtNi 58
	3.3.5	PtRu 59
	3.3.6	PtPd 61
	3.3.7	PtCu 62
	3.4	Non-Pt Alloy Nanostructures 63
	3.5	Conclusions and Outlook 64
		Acknowledgment 65
		References 65
	4	New Frontiers in Biocatalysis 73
		John M. Woodley and Nicholas J. Turner
	4.1	Introduction 73
	4.2	Recent Advances in Biocatalysis 74
	4.3	Biocatalytic Retrosynthesis 75
	4.4	Process-Driven Protein Engineering 80
	4.5	Process Developments 83
	4.5.1	Continuous Processes 83
	4.5.2	Kinetic Analysis 84
	4.6	Future Perspectives 84
		References 85
	Part Two:	Innovations in Design, Unit Operations, and Manufacturing 87
	5	Conceptual Process Design and Process Optimization 89
		Alexander Mitsos, Ung Lee, Sebastian Recker, and Mirko Skiborowski
	5.1	Introduction 89
	5.2	Mathematical Background 89
	5.2.1	System of Nonlinear Equations 90
	5.2.2	Nonlinear Programming (NLP) 90
	5.2.3	Mixed Integer Programming 92
	5.3	Synthesis 93
	5.3.1	Reactor Networks 93
	5.3.2	Separation Systems 95
	5.3.3	Overall Flowsheets 97
	5.4	Superstructure-Based Techniques 101

5.4.1	Heat Exchange Networks 101
5.4.2	Process Flowsheet Optimization 103
5.5	Integrated Process Design, Operation, and Control 105
5.6	Water and Energy Processes 105
5.7	Conclusions and Outlook 107
	References 107
6	Development of Novel Multiphase Microreactors:
•	Recent Developments and Future Challenges 115
	Evgeny Rebrov
6.1	Principles and Features 115
6.1.1	Continuous Phase Multiphase Microreactors 115
6.1.1.1	Falling Film Microreactor 115
6.1.1.2	Mesh Contactor 116
6.1.2	Dispersed Phase Multiphase Microreactors 116
6.1.2.1	Segmented Flow Microreactors 116
6.1.2.2	Microstructured Packed Beds 117
6.1.2.3	Prestructured Microreactors 118
6.1.2.4	Foam Microreactors 120
6.1.2.5	Microreactors with Fibrous Internal Structures 120
6.2	Experimental Practice 121
6.2.1	Flow Regimes 121
6.2.1.1	Capillary Microreactors 121
6.2.1.2	Structured Packed Beds 122
6.2.2	Dispersion and Holdup in Microstructured Packed Bed Reactors 123
6.2.2.1	Liquid Holdup 123
6.2.2.2	Hydrodynamic Dispersion 124
5.3	Modeling Features 125
5.3.1	Hydrodynamics 125
5.3.1.1	Falling Films Microreactors 125
5.3.2	Pressure Drop in Capillary Microreactors 127
5.3.2.1	Gas-Liquid Microreactors 127
5.3.2.2	Liquid–Liquid Microreactors 130
5.3.3	Mass Transfer 131
5.3.3.1	Capillary Microreactors 131
5.3.3.2	Falling Film Microreactors 133
5.3.4	Two-Phase Flow Distribution 133
5.4	Applications 136
5.4.1	Falling Film Microreactors 136
5.4.2	Capillary Microreactors 137
5.4.2.1	Wall Coated Catalytic Microreactors 137
5.4.2.2	Phase Transfer Catalysis in Microreactors 139
5.4.2.3	Microstructured Packed Bed Reactors 142
5.5	Conclusions and Outlook 144
	References 144

VIII	Contents

7	Process Intensification through Continuous Manufacturing:
	Implications for Unit Operation and Process Design 153
	Sebastian Falß, Nicolai Kloye, Manuel Holtkamp, Angelina Prokofyeva,
	Thomas Bieringer, and Norbert Kockmann
7.1	Continuous Processes as a Means of Process Intensification 153
7.2	Equipment for Continuous Processes 158
7.2.1	Upstream Equipment 159
7.2.1.1	Reactors without Active Mixing 159
7.2.1.2	Reactors with Dynamic Mixing 161
7.2.2	Downstream Equipment 163
7.2.3	Process Integration 165
7.2.4	Continuous Equipment as Enabling Technology 166
7.3	Process Development and Implementation for Continuous
	Processes 168
7.3.1	Process Development and Scale-Up 168
7.3.2	Flexible Implementation of Continuous Processes 172
7.4	Selected Case Studies 174
7.5	Conclusion and Outlook 180
	References 182
8	How Technical Innovation in Manufacturing Is Fostered through
	Business Innovation 191
	Nicolas Eghbali, Marianne Hoppenbrouwers, Steven Lemain, Gert De Bruyn,
	and Bart Vander Velpen
8.1	General Introduction 191
8.2	Concept of Chemical Leasing and Take Back Chemicals 192
8.2.1	The Concept of Take Back Chemicals 194
8.2.2	Advantages and Challenges of the Take Back
	Chemicals Model 195
8.2.2.1	What Are the Advantages of Implementing TaBaChem 196
8.2.2.2	What Are the Impediments in Implementing the
	New Business Models? 197
8.3	General Economic, Technical, and Management Aspects 198
8.3.1	Economic Aspects 198
8.3.1.1	Direct Gains, Indirect Gains, and Investments 198
8.3.1.2	Pricing 199
8.3.1.3	Conclusion on the Economic Aspects 200
8.3.2	Technical Aspects 201
8.3.2.1	Reuse of Chemicals 201
8.3.2.2	Process Optimization 201
8.3.2.3	Conclusion on the Technical Aspects 201
8.3.3	Organizational/Managerial Aspects 202
8.3.3.1	Sales 202
8.3.3.2	Quality Assurance 202
8.3.3.3	Tendering and Rewarding 202

8.3.3.4	Knowledge Sharing 202
8.3.3.5	Logistics 203
8.3.3.6	Conclusion on the Organizational/Managerial Aspects 203
8.4	Compatibility of the Service Model with the Actual Legislation: Some
	Important Aspects 203
8.4.1	Transition from Sales to Providing a Service to the
	Customer 204
8.4.1.1	The Supplier Retains Ownership of the Chemical 204
8.4.1.2	Result-Oriented Services Lead to Different Pricing of a
	Chemical 204
8.4.1.3	A Transparent and Elaborated Contract Is Necessary 205
8.4.2	Closing the Life Cycle and Preventing Waste 205
8.4.3	Business Confidentiality and the Protection of Competition 208
8.4.3.1	Intellectual Property Rights 208
8.4.3.2	Competition 208
8.5	General Conclusion 211
	References 211
9	Applications of 3D Printing in Synthetic Process and Analytical
	Chemistry 215
	Victor Sans, Vincenza Dragone, and Leroy Cronin
9.1	Introduction 215
9.1.1	Polymerization-Based Additive Manufacturing (AM) 216
9.1.1.1	Stereolithography (SLA) 217
9.1.1.2	Photopolymer Jetting (PJ) 217
9.1.1.3	Physical Binding 217
9.1.2	Melting-Based Techniques 218
9.1.2.1	Selective Laser Melting (SLM) 218
9.1.2.2	Electron Beam Melting (EBM) 218
9.1.2.3	Fused Deposition Modeling (FDM) 219
9.1.2.4	Laser Sintering (LS) 219
9.1.2.5	Material Jetting (MJ) 219
9.2	Chemical Reactors Manufacturing by Additive Manufacturing
	Techniques 220
9.2.1	3D Printing Technologies in Chemistry 220
9.3	3D Printing Applied to Flow Chemistry 226
9.3.1	Mesoscale Reactors 226
9.3.2	3D Printed Membranes 235
9.4	Applications of 3D Printed Flow Devices in Analytical Chemistry 239
9.4.1	3D Printing of Valves, Pumps and Actuators 239
9.4.2	Modular Devices Based on SL 242
9.5	Future Trends 248
9.5.1	Ultrafast Printing 249
9.5.2	Smart Materials through 4D Printing 250

9.6	Conclusions	251
	References	252

Part Three: Enabling Technologies 25	Part Three:	Enabling	Technologies	257
--------------------------------------	-------------	----------	---------------------	-----

10	Process Analytical Chemistry and Nondestructive Analytical Methods: The Green Chemistry Approach for Reaction Monitoring, Control, and Analysis 259
	Miriam Fontalvo Gómez, Boris Johnson Restrepo, Torsten Stelzer, and Rodolfo J. Romañach
10.1	Green Chemistry and Chemical Analysis in Manufacturing 259
10.2	Process Analytical Chemistry: Concept and Objectives 260
10.3	Vibrational Spectroscopy 264
10.4	Challenges to Overcome 268
10.5	Applications of Process Analytical Chemistry and Nondestructive Analyses 270
10.5.1	Dairy Industry 270
10.5.2	Synthesis of Active Pharmaceutical Ingredients 271
10.5.3	Preparation of Polymeric Strip Film Unit Dosage Forms 273
10.5.4	Polymer Industry 274
0.5.5	Process Analytical Chemistry for Biodiesel Production 276
10.6	Future Trends in PAC 279
	Acknowledgments 281
	References 281
1	NMR Spectroscopy and Microscopy in Reaction Engineering
	and Catalysis 289
	Carmine D'Agostino, Mick D. Mantle, and Andrew J. Sederman
1.1	Introduction 289
1.2	Basic Principles of NMR 290
1.2.1	Nuclear Spins and Bulk Magnetization 290
1.2.2	NMR Spectroscopy of Liquids 293
1.2.3	NMR Relaxation 295
1.2.3.1	Spin–Lattice Relaxation 295
1.2.3.2	Spin–Spin Relaxation 296
1.2.4	Pulsed Field Gradient NMR 297
1.3	The NMR Toolkit in Reaction Engineering and Catalysis 299
1.3.1	NMR Spectroscopy in Catalysis and Reaction Engineering 300
1.3.2	Diffusion of Fluids Confined in Porous Catalysts 306
1.3.2.1	Catalyst Deactivation Studies Using PFG NMR 311
1.3.3	NMR Relaxation Time Analysis in Porous Catalytic Materials 314
1.3.4	Combining NMR Spectroscopy with Magnetic Resonance Imaging 319
1.4	Summary 324
	References 324

12	An Introduction to Closed-Loop Process Optimization and Online Analysis 329
	Christopher S. Horbaczewskyj, Charlotte E. Willans, Alexei A. Lapkin, and
	Richard A. Bourne
12.1	Introduction 329
12.2	Principles of Self-Optimization and Requirements for Experimental
	Systems 330
12.3	Analytical Techniques for Closed-Loop Optimization 332
12.4	Decision Algorithms in Closed-Loop Optimization 334
12.4.1	Algorithms for Discovery 335
12.4.2	Algorithms for Developing Process Understanding 337
12.4.3	Algorithms for Automated Process Optimization 338
12.5	Application Examples of Closed-Loop Discovery and
	Optimization 341
12.5.1	Discovery in Closed-Loop Self-Optimization 341
12.5.2	High-Throughput Screening 342
12.5.3	Examples of One-Variable-at-a-Time Reaction Optimization 344
12.5.4	Examples of Application of Design of Experiments 346
12.5.5	Rate-Based/Physical Organic Approaches 350
12.5.6	Examples of Algorithm-Based Self-Optimization 364
12.6	Conclusions and Future Directions 368
	Acknowledgments 369
	References 369

Index 375