Contents

Foreword xxvii
Preface xxix

Part I Modern Perspective of Zero Waste Drives 1

1	Anaerobic Co-digestion as a Smart Approach for Enhanced
	Biogas Production and Simultaneous Treatment of Different
	Wastes 3
	S. Bharathi and B. J. Yogesh
1.1	Introduction 3
1.1.1	Biodegradation - Nature's Art of Recycling 3
1.1.2	Anaerobic Digestion (AD) 4
1.1.3	Sustainable Biomethanation 5
1.2	Anaerobic Co-digestion (AcD) 5
1.2.1	Zero Waste to Zero Carbon Emission Technology 6
1.2.2	Alternative Feedstocks 6
1.2.3	Microbiological Aspects 8
1.2.4	Strategies for Inoculum Development 8
1.2.5	Real-Time Monitoring of AcD 9
1.2.5.1	The pH Fluctuations 10
1.2.5.2	Carbon-Nitrogen Content 11
1.2.5.3	Temperature 11
1.2.5.4	Volatile Fatty Acids 12
1.2.5.5	Ammonia 12
1.2.5.6	Organic Loading Rate 12
1.3	Digester Designs 13
1.4	Digestate/Spent Slurry 14
1.5	Conclusion 15
	References 15

2	Integrated Approaches for the Production of Biodegradable
	Plastics and Bioenergy from Waste 19
	Chandan Kumar Sahu, Mukta Hugar, and Ravi Kumar Kadeppagari
2.1	Introduction 19
2.2	Food Waste for the Production of Biodegradable Plastics and Biogas 19
2.2.1	Biodegradable Plastics from Food Waste 20
2.2.2	Food Waste and Bioenergy 21
2.2.2.1	Ethanol from Food Waste 21
2.2.2.2	Food Waste to Biohydrogen 21
2.2.2.3	Production of Biogas from Food Waste 21
2.3	Dairy and Milk Waste for the Production of Biodegradable Plastics and Biogas 22
2.3.1	Biodegradable Plastics and Dairy Waste 22
2.3.2	PHB Production in Fermenter 22
2.3.3	Bioenergy from Dairy and Milk Waste 22
2.4	Sugar and Starch Waste for the Production of Biodegradable Plastics and
	Biogas 23
2.4.1	Sugar Waste 23
2.4.1.1	Sugar Waste and PHA 23
2.4.1.2	Bioenergy from Sugar Waste 24
2.4.2	Starch Waste 24
2.4.2.1	Biodegradable Plastics and Starch Waste 25
2.4.2.2	Bioenergy from Starch Waste 25
2.5	Wastewater for the Production of Biodegradable Plastics and
	Bioenergy 25
2.5.1	Biodegradable Plastics from Wastewater 26
2.5.1.1	Production of PHA from Wastewater 26
2.5.1,2	Production of PHB 26
2.5.2	Production of Bioenergy 26
2.6	Integrated Approaches for the Production of Biodegradable Plastics and
	Bioenergy from Waste 27
2.7	Conclusions 28
	References 28
3	Immobilized Enzymes for Bioconversion of Waste to
5	Wealth 33
	Angitha Balan, Vaisiri V. Murthy, and Ravi Kumar Kadeppagari
2.1	Introduction 33
3.1	
3.2	Enzymes as Biocatalysts 34
3.3	Immobilization of Enzymes 35
3.3.1	Enzyme Immobilization Methods 35
3.3.1.1	Adsorption 35
3.3.1.2	Covalent Bonding 36
3.3.1.3	Affinity Immobilization 36
3.3.1.4	Entrapment 36

3.3.2 3.3.2.1	Advantages of Immobilizing Enzymes 37 Stabilization 37
3.3.2.1	Flexibility of Bioreactor Design 37
3.3.2.2	Reusability and Recovery 38
3.3.2.3 3.4	Bioconversion of Waste to Useful Products by Immobilized Enzymes 38
	Utilization of Protein Wastes 39
3.4.1	Carbohydrates as Feedstock 39
3.4.2	•
3.4.3	Utilization of Polysaccharides 40
3.4.4	Lipids as Substrates 41
3.5	Applications of Nanotechnology for the Immobilization of Enzymes and Bioconversion 41
3.6	Challenges and Opportunities 43
	Acknowledgments 43
	References 44
	Part II Bioremediation for Zero Waste 47
	Discoursediation of Taxia Page for Taxa Wester 40
4	Bioremediation of Toxic Dyes for Zero Waste 49
4.1	Venkata Krishna Bayineni Introduction 49
4.1	
4.2	Background to Dye(s) 50
4.3	The Toxicity of Dye(s) 50
4.4	Bioremediation Methods 51
4.4.1	Types of Approaches: Ex situ and In situ 51
4.4.2	Microbial Remediation 52
4.4.2.1	Aerobic Treatment 52
4.4.2.2	Anaerobic Treatment 52
4.4.2.3	Aerobic-Anaerobic Treatment 52
4.4.3	Decolorization and Degradation of Dyes by Fungi 53
4.4.4	Decolorization and Degradation of Dyes by Yeast 53
4.4.5	Decolorization and Degradation of Dyes by Algae 53
4.4.6	Bacterial Decolorization and Degradation of Dyes 54
4.4.6.1	Factors Affecting Dye Decolorization and Degradation 54
4.4.7	Microbial Decolorization and Degradation Mechanisms 58
4.4.7.1	Biosorption 58
4.4.7.2	Enzymatic Degradation 58
4.4.8	Decolorization and Degradation of Dyes by Plants
	(Phytoremediation) 58
4.4.8.1	Plant Mechanism for Treating Textile Dyes and Wastewater 60
4.4.8.2	Advantages of Phytoremediation 60
4.4.9	Integrated Biological, Physical, and Chemical Treatment Methods 60
4.4.10	rDNA Technology 60
4.4.11	Enzyme-Mediated Dye Removal 62

Immobilization Techniques 62

4.4.12

4.5	Conclusion 63
	References 63
5	Bioremediation of Heavy Metals 67
	Tanmoy Paul and Nimai C. Saha
5.1	Introduction 67
5.2	Ubiquitous Heavy Metal Contamination – The Global Scenario 68
5.3	Health Hazards from Heavy Metal Pollution 69
5.4	Decontaminating Heavy Metals - The Conventional Strategies 71
5.5	Bioremediation – The Emerging Sustainable Strategy 72
5.5.1	Intervention of Metal Contamination by Microbial Adaptation 72
5.5.1.1	Genetic Circuitry Involved in Microbial Bioremediation 74
5.5.1.2	Different Heavy Metal-Resistant Mechanisms 74
5.5.2	Plant-Assisted Bioremediation (Phytoremediation) 75
5.5.3	Algae-Assisted Bioremediation (Phycoremediation) 77
5.5.4	Fungi-Assisted Bioremediation (Mycoremediation) 77
5.6	Conclusion 78
	References 79
6	Bioremediation of Pesticides Containing Soil and Water 83
	Veena S. More, Allwin Ebinesar Jacob Samuel Sehar, Anagha P. Sheshadri,
	Sangeetha Rajanna, Anantharaju Kurupalya Shivram, Aneesa Fasim,
	Archana Rao, Prakruthi Acharya, Sikandar Mulla, and Sunil S. More
6.1	Introduction 83
6.2	Pesticide Biomagnification and Consequences 84
6.3	Ill Effects of Biomagnification 84
6.4	Bioremediation 85
6.5	Methods Used in Bioremediation Process 86
6.5.1	In Situ Method 87
6.5.1.1	Bioaugmentation 87
6.5.1.2	Bioventing 87
6.5.1.3 6.5.1.4	Biosparging 87 Biostimulation 87
6.5.2	Ex Situ Methods 87
6.5.2.1	Composting 87
6.5.2.2	
6.5.2.3	
6.5.2.4	Biopiles 88 Bioreactors 88
6.6	Bioremediation Process Using Biological Mediators 88
6.6.1	Bacterial Remediation 88
6.6.2	Fungal Remediation 89
6.6.3	Phytoremediation 89
6.7	Factors Affecting Bioremediation 90
11. /	raciors micening dioreniculation 30
	Soil Type and Soil Moisture 90
6.7.1 6.7.2	Soil Type and Soil Moisture 90 Oxygen and Nutrients 90

6.7.3	Temperature and pH 90
6.7.4	Organic Matter 91
6.8	Future Perspectives 91
	References 91
7	Bioremediation of Plastics and Polythene in Marine Water 95
	Tarun Gangar and Sanjukta Patra
7.1	Introduction 95
7.2	Plastic Pollution: A Threat to the Marine Ecosystem 96
7.3	Micro- and Nanoplastics 96
7.3.1	Microplastics 97
7.3.1.1	Toxicity of Microplastics 98
7.3.2	Nanoplastics 99
7.4	Microbes Involved in the Degradation of Plastic and Related
	Polymers 99
7.4.1	Biodegradation of Plastic 99
7.4.1.1	Polyethylene (PE) 100
7.4.1.2	Polyethylene Terephthalate (PET) 101
7.4.1.3	Polystyrene (PS) 101
7.5	Enzymes Responsible for Biodegradation 101
7.6	Mechanism of Biodegradation 102
7.6.1	Formation of Biofilm 102
7.6.2	Biodeterioration 103
7.6.3	Biofragmentation 103
7.6.4	Assimilation 103
7.6.5	Mineralization 104
7.7	Biotechnology in Plastic Bioremediation 104
7.8	Future Perspectives: Development of More Refined Bioremediation
	Technologies as a Step Toward Zero Waste Strategy 106
	Acknowledgment 106
	Conflict of Interest 107
	References 107
	Part III Biological Degradation Systems 111
8	Microbes and their Consortia as Essential Additives for the
	Composting of Solid Waste 113
0.1	Mansi Rastogi and Sheetal Barapatre
8.1	Introduction 113
8.2	Classification of Solid Waste 113
8.3	Role of Microbes in Composting 114
8.4	Effect of Microbial Consortia on Solid Waste Composting 116
8.5	Benefits of Microbe-Amended Compost 119
	References 119

9	Biodegradation of Plastics by Microorganisms 123
	Md. Anisur R. Mazumder, Md. Fahad Jubayer, and Thottiam V. Ranganathar
9.1	Introduction 123
9.2	Definition and Classification of Plastics 124
9.2.1	Definition of Plastic 124
9.2.2	Classification 125
9.2.2.1	Based on Biodegradability 125
9.2.2.2	Based on Structure and Thermal Properties 126
9.2.2.3	Characteristics of Different Biodegradable Plastics 126
9.3	Biodegradation of Plastics 128
9.3.1	General Outline 128
9.3.2	Biodegradation Phases and End Products 129
9.3.2.1	Aerobic Biodegradation 129
9.3.2.2	Anaerobic Biodegradation 130
9.3.3	Mechanism of Microbial Degradation of Plastic 130
9.3.4	Factors Affecting Biodegradation of Plastics 131
9.3.5	Microorganisms Involved in the Biodegradation Process 132
9.3.6	Enzymes Involved in the Plastic Biodegradation 133
9.3.6.1	Cutinases (EC 3.1.1.74) 135
9.3.6.2	Lipases (EC 3.1.1.3) 135
9.3.6.3	Carboxylesterases (EC 3.1.1.1) 135
9.3.6.4	Proteases 135
9.3.6.5	Lignin Modifying Enzymes 136
9.4	Current Trends and Future Prospects 136
	List of Abbreviations 137
	References 138
10	Enzyme Technology for the Degradation of Lignocellulosic
	Waste 143
	Swarrna Haldar and Soumitra Banerjee
10.1	Introduction 143
10.2	Enzymes Required for the Degradation of Lignocellulosic Waste 144
10.2.1	Degradation of Cellulose 144
10.2.1.1	Microbial Production of Cellulase 144
10.2.1.2	Enzymes Responsible for Cellulose Degradation 145
10.2.1.3	Physical Pre-treatments to Break down Cellulose 145
10.2.2	Degradation of Hemicellulose 146
10.2.2.1	Enzymes Responsible for Degradation of Hemicellulose 146
10.2.2.2	Microbial Production of Hemicellulases 147
10.2.2.3	Physical Pre-treatments to Break down Hemicellulose 147
10.2.3	Degradation of Lignin 148
10.2.3.1	Microbial Production of Lignin Degrading Enzymes 148
10.2.3.2	Enzymes Responsible for the Degradation of Lignin 148
10.2.4	Degradation of Pectin 149
10.2	Utilizing Enzymes for the Degradation of Lignocellulosic Waste 150

10.4	Conclusion 150
	References 150
11	Usage of Microalgae: A Sustainable Approach to Wastewater
	Treatment 155
	Kumudini B. Satyan, Michael V. L. Chhandama, and Dhanya V. Ranjit
11.1	Introduction 155
11.1.1	Microalgae 156
11.1.2	Composition of Wastewater 157
11.2	Microalgae for Wastewater Treatment 158
11.2.1	Biological Oxygen Demand (BOD) 159
11.2.2	Chemical Oxygen Demand (COD) 159
11.2.3	Nutrients (Nitrogen and Phosphorus) 160
11.2.4	Heavy Metals 160
11.2.5	Xenobiotic Compounds 161
11.3	Cultivation of Microalgae in Wastewater 162
11.3.1	Factors Affecting the Growth of Microalgae 162
11.3.1.1	TN:TP Ratio 162
11.3.1.2	pH 162
11.3.1.3	Light 162
11.3.2	Algal Culture Systems 163
11.3.2.1	Open Systems 163
11.3.2.2	Closed Systems 164
11.4	Algae as a Source of Bioenergy 164
11.4.1	Biodiesel from Microalgae 165
11.4.2	Bioethanol from Microalgae 165
11.4.3	Biomethane from Microalgae 165
11.4.4	Hydrogen Production 165
11.4.5	Microbial Fuel Cells 166
11.5	Conclusion 166
	References 166
	Part IV Bioleaching and Biosorption of Waste: Approaches
	and Utilization 171
12	Microbes and Agri-Food Waste as Novel Sources of
	Biosorbents 173
	Simranjeet Singh, Praveen C. Ramamurthy, Vijay Kumar, Dhriti Kapoor,
	Vaishali Dhaka, and Joginder Singh
12.1	Introduction 173
12.2	Conventional Methods for Agri-Food Waste Treatment 175
12.3	Application of the Biosorption Processes 176

Removal of Inorganic Pollutants 176 Removal of Organic Pollutants 177

12.3.1

12.3.2

xii	Contents	
	12.4	Use of Genetically Engineered Microorganisms and Agri-Food Waste 178
	12.5	Biosorption Potential of Microbes and Agri-Food Waste 179
	12.6	Modification, Parameter Optimization, and Recovery 180
	12.6.1	Modification 181
	12.6.2	Parameters 182
	12.6.3	Recovery 182
	12.7	Immobilization of Biosorbent 182
	12.8	Conclusions 183
		References 185
	13	Biosorption of Heavy Metals and Metal-Complexed Dyes Under the Influence of Various Physicochemical Parameters 189
		Allwin Ebinesar Jacob Samuel Sehar, Veena S. More, Amrutha Gudibanda Ramesh, and Sunil S. More
	13.1	Introduction 189
	13.2	Mechanisms Involved in Biosorption of Toxic Heavy Metal Ions and Dyes 191
	13.3	Chemistry of Heavy Metals in Water 191
	13.4	Chemistry of Metal-Complexed Dyes 192
	13.5	Microbial Species Used for the Removal of Metals and Metal-Complexed Dyes 192
	13.5.1	Biosorption of Zinc Using Bacteria 192
	13.5.2	Biosorption of Heavy Metals by Algae 193
	13.5.3	Removal of Toxic Heavy Metals by Fungi 194
	13.5.4	Biosorption of Heavy Metals Using Yeast 194
	13.6	Industrial Application on the Biosorption of Heavy Metals 195
	13.6.1	Biosorption of Heavy Metals Using Fluidized Bed Reactor 195
	13.6.2	Biosorption of Heavy Metals by Using Packed Bed Reactors 197
	13.7	Biosorption of Reactive Dyes 198
	13.8	Metal-Complexed Dyes 199
	13.9	Biosorption of Metal-Complexed Dyes 200
	13.10	Conclusion 203
		References 203
	14	Recovery of Precious Metals from Electronic and Other
		Secondary Solid Waste by Bioleaching Approach 207
		Dayanand Peter, Leonard Shruti Arputha Sakayaraj, and Thottiam
	1.4.2	Vasudevan Ranganathan
	14.1	Introduction 207
	14.2	What Is Bioleaching? 208
	14.2.1	Mechanism of Bioleaching 208
	14.2.2	Industrial Processes of Bioleaching 209
	14.2.3	Factors Affecting Bioleaching 209

14.2.4	Advantages of Bioleaching Over Other Methods 210
14.2.5	Limitation of Bioleaching Over Other Methods 210
14.3	E-Waste, What Are They? 210
14.3.1	E-Waste Production Scale 211
14.3.2	Pollution Caused by E-Waste 211
14.3.3	General Methods of E-Waste Treatment 212
14.4	Role of Microbes in Bioleaching of E-Waste 212
14.4.1	Bacteria 212
14.4.2	Fungi 213
14.4.3	Actinobacteria and Cyanogenic Organisms 213
14.5	Application of Bioleaching for Recovery of Individual Metals 214
14.5.1	Gold 214 .
14.5.2	Silver 215
14.5.3	Copper 215
14.5.4	Nickel 215
14.6	Large-Scale Bioleaching of E-Waste 215
14.7	Future Aspects 215
	List of Abbreviations 216
	References 216
	Part V Bioreactors for Zero Waste 219
15	Photobiological Reactors for the Degradation of Harmful
15	Compounds in Wastewaters 221
	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha
15.1	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221
	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological
15.1 15.2	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222
15.1	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological
15.1 15.2 15.2.1	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222
15.1 15.2	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus
15.1 15.2 15.2.1 15.2.1.1	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222
15.1 15.2 15.2.1	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222 Isolation of Alkane-Degrading Bacteria from Petroleum Tank
15.1 15.2 15.2.1 15.2.1.1 15.2.1.2	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222 Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater 224
15.1 15.2 15.2.1 15.2.1.1 15.2.1.2	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222 Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater 224 Development of Microbubble Aerator for Wastewater Treatment by
15.1 15.2 15.2.1 15.2.1.1 15.2.1.2 15.2.1.3	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222 Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater 224 Development of Microbubble Aerator for Wastewater Treatment by Means of Aerobic Activated Sludge 224
15.1 15.2 15.2.1 15.2.1.1 15.2.1.2	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222 Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater 224 Development of Microbubble Aerator for Wastewater Treatment by Means of Aerobic Activated Sludge 224 Wastewater Produced from an Oilfield and Incessant Treatment with an
15.1 15.2 15.2.1 15.2.1.1 15.2.1.2 15.2.1.3 15.2.1.4	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222 Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater 224 Development of Microbubble Aerator for Wastewater Treatment by Means of Aerobic Activated Sludge 224 Wastewater Produced from an Oilfield and Incessant Treatment with an Oil-Degrading Bacterium 225
15.1 15.2 15.2.1 15.2.1.1 15.2.1.2 15.2.1.3	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222 Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater 224 Development of Microbubble Aerator for Wastewater Treatment by Means of Aerobic Activated Sludge 224 Wastewater Produced from an Oilfield and Incessant Treatment with an Oil-Degrading Bacterium 225 Pepper Mild Mottle Virus (a Plant Pathogen) as an Apt to Enteric
15.1 15.2 15.2.1 15.2.1.1 15.2.1.2 15.2.1.3 15.2.1.4	Compounds in Wastewaters 221 Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha Introduction 221 Photobiological Agents and Methods Used in PhotoBiological Reactors 222 Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater 222 Olive Mill Wastewater Treatment by Immobilized Cells of Aspergillus niger 222 Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater 224 Development of Microbubble Aerator for Wastewater Treatment by Means of Aerobic Activated Sludge 224 Wastewater Produced from an Oilfield and Incessant Treatment with an Oil-Degrading Bacterium 225

15.2.1.7 Bio-sorption of Copper and Lead Ions by Surplus Beer Yeast 226

15.2.1.8	Organization of Lipid-Based Biofuel Production with Waste Treatment Using Oleaginous Bacteria 227
15.2.1.9	Anaerobic Degradation of Textile Dye Bath Effluent Using <i>Halomonas</i> Species 228
15.2.1.10	Laccase Production on Eichhornia crassipes Biomass 229
15.2.1.11	Algae-Bacteria Interaction in Photo-Bioreactors 230
	Photo Sequence Batch Reactor 230
15.2.1.13	Detection of sul1 and sul2 Genes in Sulfonamide-Resistant Bacteria
	(SRB) from Sewage, Aquaculture Sources, Animal Wastes, and Hospital Wastewater 231
15.2.1.14	Photosynthetic Bacteria as a Potential Alternative to Meet Sustainable
	Wastewater Treatment Requirement 231
15.2.1.15	Anaerobic Fermentation for the Production of Short-Chain Fatty Acids
	by Acidogenic Bacteria 232
15.2.2	Use of Photolytic and Photochemical Methods in Various
	Photobiological Reactors for Treatment of Wastewater 233
15.2.2.1	Photo-Enhanced Degradation of Contaminants of Emerging Concern in
	Wastewater 233
15.2.2.2	Pond Reactors (Photo-Fenton Process) 233
15.2.2.3	Photochemical Approaches in the Treatment of Wastewater 235
15.2.3	Membrane Bioreactor 237
15.2.4	Nanotechnology in Photobiological Reactors for the Treatment of
	Wastewater 238
15.2.4.1	Potential of Nanotechnology in the Treatment of Wastewater 238
15.2.4.2	Moving Bed Biofilm Reactor 238
15.3	Conclusion 238
	Acknowledgment 238
	References 239
16	Bioreactors for the Production of Industrial Chemicals and
	Bioenergy Recovery from Waste 241
	Gargi Ghoshal
16.1	Introduction 241
16.1.1	Biogas Production 241
16.1.2	Biohydrogen Production 243
16.2	Basic Biohydrogen-Manufacturing Technologies and their
	Deficiency 244
16.2.1	Direct Biophotolysis 244
16.2.2	Photofermentation 245
16.2.3	Dark Fermentation 245
16.3	Overview of Anaerobic Membrane Bioreactors 246
16.3.1	Challenges and Opportunities 246
16.3.1.1	Membrane Fouling and Energy Demands 246
16.3.1.2	Biohydrogen Generation Rate and Yield 248
16.4	Factors Affecting Biohydrogen Production in AnMBRs 248

RT) 250
oduction
257
er than
nd
iu
u
u
iu
iu
2

xvi	Contents	
	17.3.3	Enzymes Involved Biological Pretreatment 274
	17.3.3.1	Lignin Peroxidase 275
	17.3.3.2	Manganese Peroxidase 275
	17.3.3.3	Laccases 275
	17.3.3.4	Versatile Peroxidase (VP) 276
	17.4	Enzymatic Hydrolysis 276
	17.4.1	Hydrolysis of Polysaccharides 277
	17.4.1.1	Cellulose and Hemicellulose Degrading Enzymes and Mechanisms 277
	17.5	Fermentation 277
	17.5.1	Microorganisms Involved in Fermentation 277
	17.5.2	Fermentation Process 278
	17.5.3	Product Recovery of Bioethanol Post Fermentation 278
	17.6	Conclusion and Future Prospects 279
		References 280
	18	Advancements in Bio-hydrogen Production from Waste
		Biomass 283
		Shyamali Sarma and Sankar Chakma
	18.1	Introduction 283
	18.2	Routes of Production 285
	18.2.1	Biophotolysis 285
	18.2.2	Dark Fermentation 286
	18.2.3	Photo-Fermentation 286
	18.3	Biomass as Feedstock for Biohydrogen 286
	18.4	Factors Affecting Biohydrogen 288
	18.4.1	Influence of pH 288
	18.4.2	System Temperature 288
	18.4.3	Inoculum 289
	18.4.4	Substrates 291
	18.4.5	Type of Reactor 291
	18.4.5.1	Batch Mode 291
	18.4.5.2	Continuous Mode 292
	18.4.5.3	Fed Batch 292
	18.5	Strategies to Enhance Microbial Hydrogen Production 292
	18.5.1	Integrative Process 293
	18.5.2	Medium and Process Optimization 293
	18.5.3	Metabolic Flux Analysis 294
	18.5.4	Application of Ultrasonication 295
	18.5.5	Strain Development 295

Future Perspectives and Conclusion 297

References 297

18.6

19	Reaping of Bio-Energy from Waste Using Microbial Fuel Cell		
	Technology 303		
	Senthilkumar Kandasamy, Naveenkumar Manickam, and Samraj Sadhappa		
19.1	Introduction 303		
19.1.1	Effects of Industrial Wastes on Environment 304		
19.1.1.1	MFC as Energy Source 304		
19.1.1.2	Theory of Microbial Fuel Cell 305		
19.2	Microbial Fuel Cell Components and Process 306		
19.2.1	Mechanism Behind MFC 306		
19.2.1.1	Electrode Materials in MFC 308		
19.2.1.2	Proton Exchange Membrane 309		
19.3	Application of Microbial Fuel Cell to the Social Relevance 309		
19.3.1	Electricity Generation 309		
19.3.1.1	Bio Hydrogen 310		
19.3.2	Wastewater Treatment 310		
19.3.3	Biosensor 310		
19.4	Conclusion and Future Perspectives 311		
	References 311		
20	Application of Sustainable Micro-Algal Species in the		
	Production of Bioenergy for Environmental		
	Sustainability 315		
	Senthilkumar Kandasamy, Jayabharathi Jayabalan, and Balaji Dhandapani		
20.1	Introduction 315		
20.1.1	Classification of Biofuels 315		
20.1.2	Microalgae and Bioenergy 316		
20.2	Cultivation and Processing of Microalgae 317		
20.2.1	Cultivation of Microalgae 319		
20.2.1.1	Isolation of Cell Cultures 319		
20.2.1.2	8		
20.2.2	Techniques 319		
	Filtration 319		
	Autoclaving 320		
20.2.2.3	Dry Heat 320		
20.2.2.4	Pasteurization 320		
20.2.3	Culture Conditions 320		
20.2.3.1	Temperature 320		
	Lighting 321		
20.2.3.3	Culture Media 321		
20.2.3.4	pH 321		
	Aeration 321		

Contents

20.2.4 20.2.4.1 20.2.4.2 20.2.5 20.2.6 20.2.6.1 20.2.7 20.2.7.1 20.2.7.2 20.2.7.3 20.2.7.4 20.2.7.5 20.3 20.4	Continuous Culture 322 Harvesting Cultures 322 Bioenergy Production Process from Microalgae 322 Production Processes 322 Biomass Production from Marine Water Algae 322 Large-Scale Production and Processing of Microalgae 324 Biomethane Production by Anaerobic Digestion 324 Liquid Oil Production by Thermal Liquefaction Process 325 Transesterification Process 325 Nano-Catalyzed Transesterification Process 325 Biohydrogen Production by Photobiological Process 326 Genetic Engineering for the Improvement of Microalgae 326 Conclusion and Challenges in Commercializing Microalgae 327 References 327
	Part VII Emerging Technologies (Nano Biotechnology) for Zero Waste 329
21	Nanomaterials and Biopolymers for the Remediation of Polluted Sites 331 Minchitha K. Umesha, Sadhana Venkatesh, and Swetha Seshagiri
21.1	Introduction 331
21.2	Water Remediation 332
21.2.1	Application of Nanotechnology for Water Disinfection and Textile Dye Degradation 332
21.2.2	Nanobiopolymers for Water Disinfection and Textile Dye Degradation 334
21.3	Soil Remediation 336
21.3.1	Application of Nanotechnology for Soil Remediation 337 References 339
22	Biofunctionalized Nanomaterials for Sensing and Bioremediation of Pollutants 343 Satyam and S. Patra
22.1	Introduction 343
22.2	Synthesis and Surface Modification Strategies for Nanoparticles 345
22.3	Binding Techniques for Biofunctionalization of Nanoparticles 345
22.3.1	Covalent Functionalization 346
22.3.2	Non-Covalent Functionalization 346
22.3.3	Encapsulation 347
22.3.4	Adsorption 348

22.4	Commonly Functionalized Biomaterials and Their Role in Remediation 348
22.4.1	Biopolymers 348
22.4.2	Surfactants 351
22.4.3	Nucleic Acid 352
22.4.4	Proteins and Peptides 352
22.4.5	Enzymes 353
22.5	Biofunctionalized Nanoparticle-Based Sensors for Environmental Application 354
22.6	Limitation of Biofunctionalized Nanoparticles for Environmental Application 355
22.7	Future Perspective 356
22.8	Conclusion 356
22.0	Acknowledgment 357
	References 357
23	Biogeneration of Valuable Nanomaterials from Food and Other Wastes 361
	Amrutha B. Mahanthesh, Swarrna Haldar, and Soumitra Banerjee
23.1	Introduction 361
23.2	Green Synthesis of Nanomaterials by Using Food and Agricultural
	Waste 362
23.3	Synthesis of Bionanoparticles from Food and Agricultural Waste 362
23.3.1	Cellulose Nanomaterials 363
23.3.2	Protein Nanoparticles 364
23.4	Conclusion 365
	Acknowledgments 365
	References 365
24	Biosynthesis of Nanoparticles Using Agriculture and
	Horticulture Waste 369
	Vinayaka B. Shet, Keshava Joshi, Lokeshwari Navalgund, and Ujwal Puttur
24.1	Introduction 369
24.2	Agricultural and Horticultural Waste 370
24.3	Biosynthesis of Nanoparticle 370
24.3.1	Processing of Agriculture and Horticulture Waste 370
24.3.2	Synthesis of Nanoparticles 372
24.3.3	Separation of Nanoparticles 372
24.4	Characterization of Biosynthesized Nanoparticles 373
24.4.1	UV Spectrophotometer 373
24.4.2	Fourier-Transform Infrared Spectroscopy (FTIR) 374
24.4.3	Dynamic Light Scattering (DLS) and Zeta Potential 374
24.4.4	Scanning Electron Microscope (SEM) and Transmission Electron
	Microscope (TEM) with Energy-Dispersive X-ray (EDX) 374

CX	Conten	t:

24.4.5	X-ray Diffraction (XRD) 375		
24.5	Applications of Biosynthesized Nanoparticles 375		
24.5.1	Antimicrobial Activity 375		
24.5.2	Photocatalysis 375		
24.5.3	Removal of Antibiotic from Water 376		
24.5.4	Effect on Enzyme Activity 376		
24.5.5	Nanofertilizer 376		
24.5.6	Radical Scavenging Activity 376		
24.5.7	Nano Additives for Fuel 377		
	References 377		
25	Nanobiotechnology - A Green Solution 379		
	Baishakhi De and Tridib K. Goswami		
25.1	Introduction 379		
25.2	Nanotechnology and Nanobiotechnology - The Green Processes and		
25.2	Technologies 381		
25.2.1	Green Chemistry 382		
25.2.1.1	Advantages and Challenges 384		
25.3			
25.3.1			
25.3.2	Agriculture, Potable Water, and Food Processing 385 Health, Medicine, Drug Delivery, and Pharmaceuticals 388		
25.3.2	Automobile, Aircraft, Space Travel 389		
25.3.4	Sustainable Energy, Building Technology 389		
25.3.5	Society and Education 390		
25.4	Nanotechnologies in Waste Reduction and Management 390		
25.5	Conclusion 393		
25.5	References 393		
	References 393		
26	Novel Biotechnological Approaches for Removal of Emerging		
20	Contaminants 397		
	Sangeetha Gandhi Sivasubramaniyan, Senthilkumar Kandasamy,		
	and Naveen kumar Manickam		
26.1	Introduction 397		
26.2	Classification of Emerging Contaminants 397		
26.2.1	Microfibers and Microplastics 398		
26.2.2	Pharmaceutical Contaminants 398		
26.2.3			
26.2.4			
26.2.5	Inorganic Metals in Foods and Water 399 Perfluorinated Compounds 399		
	•		
26.2.6	Disinfection Byproducts 399		
26.3	Various Sources of ECs 399		
26.3.1			
2622	Deposition of Solid and Liquid Waste on Land 399 Deposition of Solid and Liquid Waste into the Water Sources 400		
26.3.2	Deposition of Solid and Liquid Waste into the Water Sources 400		
26.3.2 26.4 26.5			

26.5.1	Physical Methods 400		
26.5.2	Chemical Methods 401		
26.5.3	Biotechnological Approach 401		
26.6	Biotechnological Approaches for the Removal of ECs 401		
26.6.1	Digestion by Membrane Bioreactor 401		
26.6.2	Enzymatic Treatment 401		
26.6.3	Biofiltration 402		
26.6.4	Bioremediation 402		
26.6.4.1	Bioaugmentation 403		
	Bioreactors 403		
	Biostimulation 404		
	Bioventing 404		
	Composting 404		
26.6.4.6			
26.6.4.7	_		
26.6.5	Phytoremediation 405		
26.6.5.1	•		
26.6.5.2			
26.6.5.3			
26.6.5.4	•		
26.6.5.5			
26.7	Conclusion 406		
	References 407		
	Part VIII Economics and Commercialization of Zero Waste		
	Biotechnologies 409		
27	Bioconversion of Waste to Wealth as Circular Bioeconomy		
21	Approach 411		
	Dayanand Peter, Jaya Rathinam, and Ranganathan T. Vasudevan		
27.1	Introduction 411		
27.1.1	Circular Economy 411		
27.1.2	Bioeconomy 412		
27.1.2	Circular Bioeconomy 412		
27.1.3	Biovalorization of Organic Waste 413		
27.2.1	Extraction of Bioactives 413		
27.2.2	Bioenergy Production 413		
27.3	Bioeconomy Waste Production and Management 414		
27.4	Concerns About Managing Food Waste in Achieving Circular		
27.1	Bioeconomy Policies 416		
27.5	Economics of Bioeconomy 417		
27.6	Entrepreneurship in Bioeconomy 417		
27.6.1	Current Trends in Bioeconomy 418		
27.7	Conclusion 418		
	===		

List of Abbreviations		418
References	418	

28	Bioconversion of Food Waste to Wealth ~ Circular		
	Bioeconomy Approach 421		
20.4	Rajam Ramasamy and Parthasarathi Subramanian		
28.1	Introduction 421		
28.2	Circular Bioeconomy 422		
28.3	Food Waste Management Current Practices 424		
28.4	Techniques for Bioconversion of Food Waste Toward Circular		
	Bioeconomy Approach 425		
28.4.1	Anaerobic Digestion 425		
28.4.1.1	Factors Influencing Anaerobic Digestion 427		
28.4.2	Microbial Fermentation 429		
28.4.3	Enzymatic Treatment 431		
28.4.3.1	Enzyme Immobilization Technology 434		
28.5	Conclusion 435		
	References 435		
29	Zero-Waste Biorefineries for Circular Economy 439		
	Puneet K. Singh, Pooja Shukla, Sunil K. Verma, Snehasish Mishra, and		
	Pankaj K. Parhi		
29.1	Introduction 439		
29.2	Bioenergy, Bioeconomy, and Biorefineries 440		
29.3	Bioeconomic Strategies Around the World 443		
29.3.1	Malaysia 444		
29.3.2	Brazil 444		
29.3.3	United States 444		
29.3.4	Canada 444		
29.3.5	Germany 444		
29.3.6	European Union 445		
29.3.7	Scenario of Bioeconomy in India 445		
29.4	Challenging Factors and Impact on Bioeconomy 445		
29.5	Effect of Increased CO ₂ Concentration, Sequestration, and Circular Economy 447		
29.6	Carbon Sequestration in India 447		
29.7	Methods for CO ₂ Capture 448		
29.7.1	Scenario 1. Photosynthetic Bacterial Model for CO ₂ Sequestration 448		
29.7.2	Scenario 2. Biochar Model for CO ₂ Sequestration 448		
29.7.3	Scenario 3. Biofuels 449		
29.7.4	Biological-Based Methods to Capture CO ₂ 449		
29.7.4.1	Photosynthetic Model 449		
29.7.4.2	Substrate in Biorefinery and Carbon Management 449		
29.7. 4 .2 29.8	Conclusion and Future Approach 451		
-7.0	References 452		

30	Feasibility and Economics of Biobutanol from Lignocellulosic and Starchy Residues 457
	Sandesh Kanthakere
30.1	Introduction 457
30.2	Opportunities and Future of Zero Waste Biobutanol 458
30.3	Generation of Lignocellulosic and Starchy Wastes 459
30.3.1	Types and Sources of Waste Generation 460
30.3.2	Composition of Lignocellulose and Starchy Residues 461
30.4	Value Added Products from Lignocellulose and Starchy Residues 462
30.4.1	Feasibility of Biobutanol Production from Lignocellulose and Starchy Residues 463
30.4.2	Pretreatment 463
30.4.3	Economics of Biobutanol Production 465
30.5	Conclusion 468
	References 468
31	Critical Issues That Can Underpin the Drive for Sustainable
	Anaerobic Biorefinery 473
	Spyridon Achinas
31.1	Introduction 473
31.2	Biogas - An Energy Vector 474
31.3	Anaerobic Biorefinery Approach 475
31.4	Technological Trends and Challenges in the Anaerobic Biorefinery 477
31.4.1	Pretreatment 477
31.4.2	Multistage AD Process 480
31.4.3	Dynamics of Methanogenic Communities 480
31.5	Perspectives Toward the Revitalization of the Anaerobic
	Biorefineries 482
31.5.1	Reciprocity Between Research, Industry, and Government 482
31.5.2	Transition to the Biogas-based Green Economy 483
31.6	Conclusion 485
	Conflict of Interest 485
	References 485
32	Microbiology of Biogas Production from Food Waste: Current
	Status, Challenges, and Future Needs 491
	Vanajakshi Vasudeva, Inchara Crasta, and Sandeep N. Mudliar
32.1	Introduction 491
32.2	Fundamentals for Accomplishing National Biofuel Policy 492
32.3	Significances of Anaerobic Microbiology in Biogas Process 493
32.4	Microbiology and Physico-Chemical Process in AD 493
32.4.1	Hydrolysis and Acidogenesis 493
32.4.2	Acetogenesis 494
32.4.3	Methanogenesis and the Essential Microbial Consortia 495
32.5	Pretreatment 496

xxiv	Contents
------	----------

32.6 Variations in Anaerobic Digestion 496

33.4.9 Bioasphalt 516
 33.4.10 Bioplasticizers 516
 33.4.11 Biosolvent 516

32.7	Factors Influencing Biogas Production 497
32.7.1	Temperature 497
32.7.2	pH 497
32.7.3	VFA 498
32.7.4	Microbial Consortia in AD 498
32.7.5	Recirculation of Leachate 499
32.7.6	Ammonia 499
32.7.7	Feedstock Composition 500
32.7.7.1	Protein-Rich Substrate 500
32.7.7.2	Lipid-Rich Substrate 500
32.7.7.3	Carbohydrate-Rich Substrate 500
32.7.8	Trace Element Supplementation 500
32.7.9	Environment/Alkalinity 501
32.7.10	Toxicity 501
32.8	Application of Metagenomics 502
32.9	Conclusions and Future Needs 504
	List of Abbreviations 504
	References 505
	Part IV Green and Sustainable future (Zero Waste and Zero
	Part IX Green and Sustainable future (Zero Waste and Zero Emissions) 507
33	·
33	Emissions) 507
33	Emissions) 507 Valorization of Waste Cooking Oil into Biodiesel,
33	Emissions) 507 Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509
33 .1	Emissions) 507 Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra
	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari
33.1	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510
33.1 33.2	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511
33.1 33.2 33.2.1	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511
33.1 33.2 33.2.1 33.2.2 33.3 33.4	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512
33.1 33.2 33.2.1 33.2.2 33.3	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512 Biosurfactants and Liquid Detergents 512
33.1 33.2 33.2.1 33.2.2 33.3 33.4	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512 Biosurfactants and Liquid Detergents 512 Green Chemical Lubricants 513
33.1 33.2 33.2.1 33.2.2 33.3 33.4 33.4.1 33.4.2 33.4.3	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512 Biosurfactants and Liquid Detergents 512 Green Chemical Lubricants 513 Biodiesel Production 513
33.1 33.2 33.2.1 33.2.2 33.3 33.4 33.4.1 33.4.2 33.4.3 33.4.4	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512 Biosurfactants and Liquid Detergents 512 Green Chemical Lubricants 513 Biodiesel Production 513 Microbial Lipids 513
33.1 33.2 33.2.1 33.2.2 33.3 33.4 33.4.1 33.4.2 33.4.3 33.4.4 33.4.5	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512 Biosurfactants and Liquid Detergents 512 Green Chemical Lubricants 513 Biodiesel Production 513 Microbial Lipids 513 Vitamins and Nutraceuticals 514
33.1 33.2 33.2.1 33.2.2 33.3 33.4 33.4.1 33.4.2 33.4.3 33.4.4 33.4.5 33.4.6	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512 Biosurfactants and Liquid Detergents 512 Green Chemical Lubricants 513 Biodiesel Production 513 Microbial Lipids 513 Vitamins and Nutraceuticals 514 Biopolymer Synthesis 514
33.1 33.2 33.2.1 33.2.2 33.3 33.4 33.4.1 33.4.2 33.4.3 33.4.4 33.4.5	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products 509 Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari Introduction 509 Treatment 510 Chemical Treatment 510 Microbiological and Biotechnological Treatment 511 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512 Biosurfactants and Liquid Detergents 512 Green Chemical Lubricants 513 Biodiesel Production 513 Microbial Lipids 513 Vitamins and Nutraceuticals 514

33.5	Conclusion 516			
	References 517			
34	Agri and Food Waste Valorization Through the Production of			
	Biochemicals and Packaging Materials 521			
	A. Jagannath and Pooja J. Rao			
34.1	Introduction 521			
34.2	Importance 522			
34.3	Worldwide Initiatives 522			
34.4	Composition-Based Solutions and Approaches 523			
34.5	Biochemicals 523			
34.5.1	Functional Phytochemicals 524			
34.5.2	Industrial-Relevant Biochemicals 524			
34.5.3	Enzymes 525			
34.5.4	Foods/Feeds/Supplements 525			
34.6	Biofuels 526			
34.7	Packaging Materials and Bioplastics 526			
34.7.1	Scope and Features 527			
34.7.2	Polylactic Acid (PLA) 527			
34.7.3	Polyhydroxyalkanoates (PHAs) 529			
34.7.4	Reinforcement in Bioplastic Properties 529			
34.7.4.1	Natural Extract 529			
34.7.4.2				
34.7.4.3				
34.8	Green Valorization 531			
34.9	Conclusion 531			
	References 532			
35	Edible Coatings and Films from Agricultural and Marine Food			
	Wastes <i>543</i>			
	C. Naga Deepika, Murlidhar Meghwal, Pramod K. Prabhakar, Anurag Singh,			
	Rekha Rani, and Ravi Kumar Kadeppagari			
35.1	Introduction 543			
35.2	Sources of Food Waste 544			
35.3	Film/Coating Made from Agri-Food Waste 545			
35.3.1	Biopolymers from Fruits and Vegetables Waste 545			
35.3.2	Biopolymers from Grain Wastage 546			
35.3.3	Bioactive Compounds from Plant Residues 547			
35.4	Film/Coating Materials from Marine Biowaste 548			
35.4.1	Fish Processing By-products 549			
35.4.2	Crustacean By-Products 549			
35.5	Film/Coating Formation Methods 550			
35.5.1	Solvent Casting 550			
35.5.2	Extrusion 551			
35.5.3	Dipping Method 552			

ivxx	Contents	
	35.5.4	Spraying Method 552
	35.5.5	Spreading Method 552
	35.6	Conclusion 552
		References 553
	36	Valorization of By-Products of Milk Fat Processing 557
		Menon R. Ravindra, Monika Sharma, Rajesh Krishnegowda, and Amanchi
		Sangma
	36.1	Introduction 557
	36.2	Processing of Milk Fat and Its By-Products 558
	36.3	Valorization of Buttermilk 558
	36.3.1	Buttermilk as an Ingredient in Food and Dairy Products 559
	36.3.1.1	Market Milk 559
		Dahi 559
		Yoghurt 559
		Cheeses 560
		Indian Traditional Dairy Products 560
		Buttermilk Ice Cream 560
		Dairy-Based Beverages 560
	36.3.1.8	Probiotic Drinks 561
	36.3.1.9	Dried Buttermilk 561
	36.3.2	Buttermilk as Encapsulating Agent 561
	36.3.3	Buttermilk as a Source of Phospholipids 562
	36.4	Valorization of Ghee Residue 562
	36.4.1	Utilization of Ghee Residue for Value-Added Products 563
	36.4.2	Ghee Residue as an Ingredient in Dairy and Food Industry 563
	36.4.2.1	Baked Products 563
	36.4.2.2	Chocolate and Confectionery 563
	36.4.2.3	Ghee-Residue-Based Flavor Enhancer 564
	36.4.2.4	Indian Traditional Sweetmeat 564
	36.4.3	Ghee Residue as Animal Feed 564
	36.4.4	Ghee Residue as Source of Phospholipids 564
	36.5	Conclusion 565
		References 565

Index 569