Contents

Pre	fa	re	 ١	/	ı

List of Figures --- IX

Introduction to Volume 1 --- XI

1	Dynamical systems — 1
1.1	Basic definitions —— 1
1.2	Topological conjugacy and structural stability — 4
1.3	Factors —— 9
1.4	Subsystems —— 10
1.5	Mixing and irreducibility —— 13
1.5.1	Minimality —— 14
1.5.2	Transitivity and topological mixing —— 15
1.5.3	Topological exactness —— 21
1.6	Examples 21
1.6.1	Rotations of compact topological groups —— 21
1.6.2	Maps of the interval —— 27
1.7	Exercises —— 31
2	Homeomorphisms of the circle —— 37
2.1	Lifts of circle maps —— 37
2.2	Orientation-preserving homeomorphisms of the circle —— 44
2.2.1	Rotation numbers —— 48
2.3	Minimality for homeomorphisms and diffeomorphisms of the
	circle 53
2.3.1	Denjoy's theorem —— 55
2.3.2	Denjoy's counterexample —— 64
2.4	Exercises —— 65
3	Symbolic dynamics —— 67
3.1	Full shifts —— 67
3.2	Subshifts of finite type —— 73
3.2.1	Topological transitivity —— 79
3.2.2	Topological exactness —— 80
3.2.3	Asymptotic behavior of periodic points —— 81
3.3	General subshifts of finite type — 91
3.4	Exercises — 93

4	Distance expanding maps —— 97
4.1	Definition and examples —— 97
4.1.1	Expanding repellers —— 98
4.1.2	Hyperbolic Cantor sets —— 101
4.2	Inverse branches —— 108
4.3	Shadowing —— 115
4.4	Markov partitions —— 121
4.5	Symbolic representation generated by a Markov partition —— 130
4.6	Exercises —— 136
5	(Positively) expansive maps —— 139
5.1	Expansiveness —— 139
5.2	Uniform expansiveness —— 141
5.3	Expansive maps are expanding with respect to an equivalent
	metric 143
5.4	Parabolic Cantor sets —— 146
5.5	Exercises —— 148
6	Shub expanding endomorphisms —— 151
6.1	Shub expanding endomorphisms of the circle —— 151
6.2	Definition, characterization, and properties of general Shub expanding
	endomorphisms —— 156
6.3	A digression into algebraic topology —— 161
6.3.1	Deck transformations —— 161
6.3.2	Lifts —— 164
6.4	Dynamical properties —— 168
6.4.1	Expanding property —— 168
6.4.2	Topological exactness and density of periodic points —— 169
6.4.3	Topological conjugacy and structural stability —— 172
6.5	Exercises —— 176
7	Topological entropy —— 177
7.1	Covers of a set —— 177
7.1.1	Dynamical covers —— 179
7.2	Definition of topological entropy via open covers —— 181
7.2.1	First stage: entropy of an open cover —— 181
7.2.2	Second stage: entropy of a system relative to an open cover —— 183
7.2.3	Third and final stage: entropy of a system —— 186
7.3	Bowen's definition of topological entropy —— 194
7.4	Topological degree —— 200
7.5	Misiurewicz-Przytycki theorem — 201
7.6	Exercises —— 203

8	Ergodic theory —— 205
8.1	Measure-preserving transformations —— 205
8.1.1	Examples of invariant measures —— 207
8.1.2	Poincaré's recurrence theorem —— 211
8.1.3	Existence of invariant measures —— 212
8.2	Ergodic transformations —— 216
8.2.1	Birkhoff's ergodic theorem —— 222
8.2.2	Existence of ergodic measures —— 231
8.2.3	Examples of ergodic measures —— 234
8.2.4	Uniquely ergodic transformations —— 241
8.3	Mixing transformations —— 248
8.3.1	Weak mixing —— 248
8.3.2	Mixing 253
8.3.3	K-mixin ['] g —— 255
8.4	Rokhlin's natural extension —— 258
8.5	Exercises —— 264
9	Measure-theoretic entropy 275
9.1	An excursion into the origins of entropy —— 275
9.2	Partitions of a measurable space —— 277
9.3	Information and conditional information functions —— 278
9.4	Definition of measure-theoretic entropy —— 283
9.4.1	First stage: entropy and conditional entropy for partitions — 283
9.4.2	Second stage: entropy of a system relative to a partition —— 285
9.4.3	Third and final stage: entropy of a system —— 292
9.5	Shannon-McMillan-Breiman theorem —— 300
9.6	Brin–Katok local entropy formula —— 305
9.7	Exercises —— 314
10	Infinite invariant measures —— 317
10.1	Quasi-invariant measures, ergodicity and conservativity —— 317
10.2	Invariant measures and inducing —— 321
10.3	Ergodic theorems —— 330
10.4	Absolutely continuous σ -finite invariant measures —— 338
10.5	Exercises —— 345
11	Topological pressure —— 349
11.1	Definition of topological pressure via open covers —— 350
11.1.1	First stage: pressure of a potential relative to an open cover —— 350
11.1.2	Second stage: the pressure of a potential —— 357
11.2	Bowen's definition of topological pressure —— 362
11.3	Basic properties of topological pressure —— 367

11.4	Examples —— 368
11.5	Exercises —— 370
12	The variational principle and equilibrium states —— 371
12.1	The variational principle —— 371
12.1.1	Consequences of the variational principle —— 379
12.2	Equilibrium states —— 381
12.3	Examples of equilibrium states —— 384
12.4	Exercises —— 385
A	A selection of classical results 387
A.1	Measure theory —— 387
A.1.1	Collections of sets and measurable spaces —— 387
A.1.2	Measurable transformations —— 391
A.1.3	Measure spaces —— 393
A.1.4	Extension of set functions to measures —— 395
A.1.5	Integration —— 398
A.1.6	Convergence theorems —— 400
A.1.7	Mutual singularity, absolute continuity and equivalence of measures —— 406
A.1.8	The space $C(X)$, its dual $C(X)^*$ and the subspace $M(X)$ — 407
A.1.9	Expected values and conditional expectation functions —— 410
A.2	Analysis —— 418
Bibliog	raphy 419
Index -	 423
Volun	ne 2
13	Gibbs states and transfer operators for open, distance expanding systems
13.1	Hölder continuous potentials
13.2	Gibbs measures
13.2.1	Definition and properties
13.2.2	Invariant Gibbs states are equilibrium states
13.3	Jacobians and changes of variables
13.4	Construction of invariant measures from quasi-invariant ones
13.5	Transfer operators
13.6	Non-necessarily-invariant Gibbs states
13.6.1	Existence of eigenmeasures for the dual of the transfer operator
13.6.2	Eigenmeasures are conformal measures

13.6.3	Eigenmeasures are Gibbs states for transitive systems
13.6.4	Ergodicity of the eigenmeasures for transitive systems
13.6.5	Metric exactness of the eigenmeasures for topologically exact systems
13.7	Invariant Gibbs states
13.7.1	Almost periodicity of normalized transfer operators
13.7.2	Existence, uniqueness and ergodicity of invariant Gibbs states for transitive systems
13.7.3	Invariant Gibbs states and equilibrium states coincide and are unique
13.7.4	Hölder continuous potentials with the same Gibbs states
13.7.5	Invariant Gibbs states have positive entropy; pressure gap
13.7.6	Absolutely continuous invariant measures for Shub expanding maps
13.8	Finer properties of transfer operators and Gibbs states
13.8.1	Iterates of transfer operators
13.8.2	Ionescu-Tulcea and Marinescu inequality and spectral gap
13.8.3	Continuity of Gibbs states
13.9	Stochastic laws
13.9.1	Exponential decay of correlations
13.9.2	Asymptotic variance
13.9.3	Central limit theorem
13.9.4	Law of the iterated logarithm
13.9.5	Metric exactness, K-mixing, and weak Bernoulli
13.10	Real analyticity of topological pressure
13.11	Exercises
14	Lasota-Yorke maps
14.1	Definition
14.2	Transfer operator
14.3	Existence of absolutely continuous invariant probability measures
14.4	Exponential decay of correlations
14.5	Exercises
15	Fractal measures and dimensions
15.1	Outer measures
15.2	Geometric (Hausdorff and packing) outer measures and dimensions
15.2.1	Gauge functions
15.2.2	Hausdorff measures
15.2.3	Packing measures
15.2.4	Packing vs. Hausdorff measures
15.3	Dimensions of sets
15.3.1	Hausdorff dimension
15.3.2	Packing dimensions
15.3.3	Packing vs. Hausdorff dimensions

15.3.4	Box-counting dimensions
15.3.5	Alternate definitions of box dimensions
15.3.6	Hausdorff vs. packing vs. box dimensions
15.3.7	Hausdorff, packing and box dimensions under (bi)-Lipschitz mappings
15.4	A digression into geometric measure theory
15.5	Volume lemmas; Frostman converse theorems
15.6	Dimensions of measures
15.7	Exercises
16	Conformal expanding repellers
16.1	Conformal maps
16.2	Conformal expanding repellers
16.3	Bowen's formula
16.3.1	Special case of Hutchinson's formula
16.4	Real-analytic dependence of Hausdorff dimension of repellers in ${\mathbb C}$
16.5	Dimensions of measures, Lyapunov exponents and measure-theoretic
	entropy
16.6	Multifractal analysis of Gibbs states
16.7	Exercises
17	Countable-state thermodynamic formalism
17.1	Finitely irreducible subshifts
17.1.1	Finitely primitive subshifts
17.2	Topological pressure
17.2.1	Potentials: acceptability and Hölder continuity on cylinders
17.2.2	Partition functions
17.2.3	The pressure function
17.3	Variational principles and equilibrium states
17.4	Gibbs states
17.5	Gibbs states vs. equilibrium states
17.6	Transfer operator
17.7	Existence and uniqueness of eigenmeasures of the dual transfer
	operator, of Gibbs states and of equilibrium states
17.8	The invariant Gibbs state has positive entropy; pressure gap
17.9	Exercises
18	Countable-state thermodynamic formalism: finer properties
18.1	Ionescu-Tulcea and Marinescu inequality
18.2	Continuity of Gibbs states
18.3	Stochastic laws
18.3.1	Exponential decay of correlations
18.3.2	Asymptotic variance

18.3.3	Central limit theorem
18.3.4	Law of the iterated logarithm
18.4	Potentials with the same Gibbs states
18.5	Exercises
19	Conformal graph directed Markov systems
19.1	Graph directed Markov systems
19.1.1	The underlying multigraph ${\cal G}$
19.1.2	The underlying matrix A
19.1.3	The system itself
19.2	Properties of conformal maps in \mathbb{R}^d , $d \ge 2$
19.3	Conformal graph directed Markov systems
19.4	Topological pressure, finiteness parameter, and Bowen parameter for CGDMSs
19.5	Classification of CGDMSs
19.6	Bowen's formula for CGDMSs
19.6.1	The finite case
19.6.2	The general case
19.6.3	Hutchinson's formula
19.7	Other separation conditions and cone condition
19.7.1	The strong open set condition
19.7.2	The boundary separation condition
19.7.3	The strong separation condition
19.7.4	The cone condition
19.7.5	Conformal-likeness
19.8	Hölder families of functions and conformal measures
19.8.1	Basic definitions and properties
19.8.2	Conformal measures for summable Hölder families of functions
19.8.3	Conformal measures for CGDMSs
19.8.4	Dimensions of measures for CGDMSs
19.9	Examples
19.10	Exercises
20	Real analyticity of topological pressure and Hausdorff dimension
20.1	Real analyticity of pressure; part I
20.2	Real analyticity of pressure; part II
20.3	Real analyticity of pressure; part III
20.4	Real analyticity of Hausdorff dimension for CGDMSs in ${\mathbb C}$
20.5	Exercises
21	Multifractal analysis for conformal graph directed Markov systems
21.1	Pressure and temperature

XXIV — Contents

21.2 21.3 21.3.1 21.3.2	Multifractal analysis of the conformal measure m_F over a subset of J Multifractal analysis over J Under the boundary separation condition Under other conditions
21.4 21.5	Multifractal analysis over another subset of <i>J</i> Exercises
Volum	e 3
22	The Riemann-Hurwitz formula
22.1	Proper analytic maps and their degree
22.2	The Euler characteristic of plane bordered surfaces
22.3	The Riemann–Hurwitz formula for bordered surfaces in $\widehat{\mathbb{C}}$
22.4	Euler characteristic: the general $\widehat{\mathbb{C}}$ case
22.5	Riemann–Hurwitz formula: the general $\widehat{\mathbb{C}}$ case
22.6	Exercises
23	Selected tools from complex analysis
23.1	Koebe's distortion theorems
23.2	Normal families and Montel's theorem
24	Dynamics and topology of rational functions: their Fatou and Julia sets
24.1	Fatou set, Julia set and periodic points
24.1.1	Attracting periodic points
24.1.2	Non-attracting periodic points
24.2	Rationally indifferent periodic points
24.2.1	Local and asymptotic behavior of holomorphic functions around rationally indifferent periodic points; part I
24.2.2	Leau-Fatou flower petals
24.2.3	Local and asymptotic behavior of rational functions around rationally indifferent periodic points; part II: Fatou's flower theorem and fundamental domains
24.3	Non-attracting periodic points revisited: total number and denseness of repelling periodic points
24.4	The structure of the Fatou set
24.4.1	Forward invariant components of the Fatou set
24.4.2	Periodic components of the Fatou set
24.5	Cremer points, boundary of Siegel disks and Herman rings
24.6	Continuity of Julia sets
24.7	Polynomials
24.8	Exercises

25	Selected technical properties of rational functions
25.1	Passing near critical points; results and applications
25.2	Two rules for critical points
25.3	Expanding subsets of Julia sets
25.4	Lyubich's geometric lemma
25.5	Two auxiliary partitions
25.5.1	Boundary partition
25.5.2	Exponentially large partition
25.5.3	Mañé's partition
25.6	Miscellaneous facts
25.6.1	Miscellaneous general facts
25.6.2	Miscellaneous facts about rational functions
25.7	Exercises
26	Expanding (or hyperbolic), subexpanding, and parabolic rational functions: topological outlook
26.1	Expanding rational functions
26.2	Expansive and parabolic rational functions
26.3	Subexpanding rational functions
26.4	Exercises
27	Equilibrium states for rational functions and Hölder continuous potentials
	with pressure gap
27.1	Bad and good inverse branches
27.2	The transfer operator $\mathcal{L}_{\varphi}: \mathcal{C}(\mathcal{J}(T)) \to \mathcal{C}(\mathcal{J}(T))$; its lower and upper
	bounds
27.2.1	First lower bounds for $\mathcal{L}_{m{arphi}}$
27.2.2	Auxiliary operators L_{β}
27.2.3	Final bounds
27.3	Equicontinuity of iterates of $\mathcal{L}_{m{arphi}}$; "Gibbs" states $m_{m{arphi}}$ and $\mu_{m{arphi}}$
27.4	Spectral properties of the transfer operator $\widehat{\mathcal{L}}_{oldsymbol{arphi}}$ and their dynamical
	consequences
27.5	Equilibrium states for $oldsymbol{arphi}: \mathcal{J}(\mathcal{T}) ightarrow \mathbb{R}$
27.5.1	The "Gibbs" state $\mu_{oldsymbol{arphi}}$ is an equilibrium state for $oldsymbol{arphi}: \mathcal{J}(extsf{ extit{T}}) ightarrow \mathbb{R}$
27.6	Continuous dependence on $arphi$ of the "Gibbs" states m_{arphi} , μ_{arphi} and the density $ ho_{arphi}$
27.7	Differentiability of topological pressure
27.8	Uniqueness of equilibrium states for Hölder continuous potentials
27.9	Assorted remarks
27.10	Exercises

28	Invariant measures: fractal and dynamical properties
28.1	Lyapunov exponents are non-negative
28.2	Ruelle's inequality
28.3	Pesin's theory in a conformal setting
28.4	Volume lemmas, Hausdorff and packing dimensions of invariant measures
28.5	$HD(\mathcal{J}(T)) > 0$ and radial Julia sets $\mathcal{J}_r(T)$, $\mathcal{J}_{re}(T)$, $\mathcal{J}_{ure}(T)$
28.6	Conformal Katok's theory of expanding sets and topological pressure
28.6.1	Pressure-like definition of the functional $h_{\mu} + \int \varphi d\mu$
28.6.2	Conformal Katok's theory
28.7	Exercises
29	Sullivan's conformal measures for rational functions
29.1	General concept of conformal measures
29.1.1	Motivation for and definition of general conformal measures
29.1.2	Selected properties of general conformal measures
29.1.3	The limit construction and PS limit measures
29.1.4	Conformality properties of PS limit measures
29.2	Sullivan's conformal measures
29.3	Pesin's formula
29.4	Exercises
30	Conformal measures, invariant measures, and fractal geometry of
	expanding rational functions
30.1	Fundamental fractal geometry
30.2	Geometric rigidity
30.3	Exercises
31	Conformal measures, invariant measures, and fractal geometry of parabolic
	rational functions
31.1	General conformal measures for expansive topological dynamical systems
31.2	Geometric topological pressure and generalized geometric conformal measures for parabolic rational functions
31.3	Sullivan's conformal measures for parabolic rational functions
31.3.1	Technical preparations
31.3.2	The atomless h_T -conformal measure m_T : existence, uniqueness, ergodicity and conservativity
31.3.3	The complete structure of Sullivan's conformal measures for parabolic rational functions: the atomless measure m_T and purely atomic measures; Bowen's formula

31.4	Invariant measures equivalent to m_{T} : existence, uniqueness, ergodicity and the finite-infinite dichotomy
31.5	Hausdorff and packing measures
31.6	Exercises
32	Conformal measures, invariant measures, and fractal geometry of subexpanding rational functions
32.1	Sullivan's conformal measures for subexpanding rational functions
32.1.1	Technical preparations
32.1.2	The atomless h_T -conformal measure m_T : existence, uniqueness, ergodicity and conservativity
32.1.3	The complete structure of Sullivan's conformal measures for
	subexpanding rational functions: the atomless measure m_T and purely atomic measures; Bowen's formula
32.2	Invariant probability measure equivalent to m_T : existence, uniqueness, and ergodicity
32.3	Hausdorff and packing measures
32.4	Exercises