

Contents

1	Introduction	1
1.1	Motivation	2
1.1.1	Mathematical Modelling in General	2
1.1.2	First Principle and Knowledge-Based Models	4
1.1.3	Data-Driven Models	6
1.1.4	Evolving Models	11
1.1.5	Evolving Fuzzy Systems	15
1.2	Definitions and Goals	17
1.2.1	Mathematical Definition of Fuzzy Systems	18
1.2.2	Goals of Evolving Fuzzy Systems	34
1.3	Outline of the Book	41

Part I: Basic Methodologies

2	Basic Algorithms for EFS	45
2.1	Incremental Calculation of Statistical Measures	46
2.1.1	Incremental Update of the Mean	46
2.1.2	Incremental Update of the (Inverse) Covariance Matrix	46
2.1.3	Incremental Calculation of the Correlation Coefficient	48
2.1.4	Updating Model Qualities	50
2.2	Global Learning of Consequent Parameters	57
2.2.1	Global Learning in Batch Mode	57
2.2.2	Global Learning in Incremental Mode	59
2.3	Local Learning of Consequent Parameters	65
2.3.1	Local Learning in Batch Mode	65
2.3.2	Local Learning in Incremental Mode	67

2.4	Comparison of Global and Local Learning	69
2.5	Success and Failure of Consequent Adaptation	71
2.6	Enhanced Issues in Consequent Learning	76
2.6.1	Weighting of Data Samples	76
2.6.2	Orthogonal Regressors in Consequent Learning: More Flexibility, Less Computational Complexity	77
2.6.3	Alternatives for Speeding Up Rule Consequent Learning ..	81
2.7	Incremental Learning of Non-linear Antecedent Parameters	81
2.8	On the Demand of Alternative Optimization Functions	85
2.8.1	Problem Statement	85
2.8.2	Possible Alternatives	87
3	EFS Approaches for Regression and Classification	93
3.1	The <i>FLEXFIS</i> Family	94
3.1.1	<i>FLEXFIS</i> for Regression	94
3.1.2	<i>FLEXFIS</i> for Classification (<i>FLEXFIS-Class</i>)	113
3.1.3	<i>eVQ-Class</i> as Spin-off of <i>FLEXFIS-Class</i>	117
3.1.4	Extensions to <i>eVQ</i>	123
3.2	The <i>eTS</i> Family	131
3.2.1	<i>eTS</i> for Regression	131
3.2.2	<i>eTS</i> for Classification (<i>eClass</i>)	138
3.2.3	Comparison between <i>FLEXFIS</i> and <i>eTS</i>	139
3.3	The <i>ePL</i> Approach	147
3.4	The <i>DENFIS</i> Approach	150
3.4.1	Rule Evolution and Update with <i>ECM</i>	151
3.4.2	Adaptation of Consequents in <i>DENFIS</i>	153
3.5	The <i>SOFNN</i> Approach	154
3.5.1	Architecture and Consequent Learning	154
3.5.2	Adding Fuzzy Rules	155
3.5.3	Pruning Fuzzy Rules	157
3.6	The <i>SAFIS</i> Approach	157
3.7	Other Approaches	159
3.7.1	The <i>SONFIN</i> Approach	160
3.7.2	The <i>GD-FNN</i> Approach	161
3.7.3	The <i>ENFRN</i> Approach	162
3.7.4	The <i>SEIT2FNN</i> Approach	162
3.7.5	The <i>EFP</i> Approach	163
Part II: Advanced Concepts		
4	Towards Robust and Process-Save EFS	167
4.1	Overcoming Instabilities in the Learning Process	168
4.1.1	Problem Statement	168
4.1.2	Regularization for Improved Learning Stability	170

4.2	Handling Drifts and Shifts in On-Line Data Streams	178
4.2.1	Problem Statement	178
4.2.2	Automatic Detection of Drifts/Shifts	182
4.2.3	Reaction on Drifts/Shifts in EFS	184
4.3	Overcoming the Unlearning Effect	194
4.4	Outlier and Fault Treatment	197
4.5	Modelling Uncertainties in EFS, Reliability Aspects	203
4.5.1	For Regression Problems	203
4.5.2	For Classification Problems	206
4.6	On Enhancing Extrapolation Behavior of EFS	208
5	On Improving Performance and Increasing Useability of EFS	213
5.1	On-Line Split-and-Merge of Rules	214
5.1.1	In the Cluster Space	214
5.1.2	Based on Local Error Characteristics	222
5.1.3	Based on Rule Similarity	225
5.2	On-Line Feature Weighting in EFS (Achieving Dynamic Soft Dimensionality Reduction)	227
5.2.1	Problem Statement	227
5.2.2	For Classification Problems	228
5.2.3	For Regression Problems	236
5.3	Active and Semi-supervised Learning	239
5.3.1	Problem Statement	239
5.3.2	Direct Active Learning	240
5.3.3	Hybrid Active Learning (HAL)	242
5.3.4	Semi-supervised Learning	246
5.4	Incremental Classifier Fusion	251
5.5	Alternatives to Incremental Learning	254
5.5.1	The Concept of Dynamic Data Mining	255
5.5.2	Lazy Learning with Fuzzy Systems — Fuzzy Lazy Learning (FLL)	257
6	Interpretability Issues in EFS	261
6.1	Motivation	262
6.2	Complexity Reduction	265
6.2.1	On-Line Merging of Fuzzy Sets (Distinguishability Assurance)	266
6.2.2	On-Line Rule Merging – A Generic Concept	275
6.2.3	Deletion of Obsolete Rules	279
6.2.4	Integration Concept for On-Line Fuzzy Set and Rule Merging	279
6.2.5	On-Line Dimensionality Reduction	281
6.3	Towards Interpretable EFS	282
6.3.1	Linguistic Interpretability	283
6.3.2	Visual Interpretability	290
6.4	Reliability Aspects in EFS	290

Part III: Applications

7	Online System Identification and Prediction	295
7.1	On-Line System Identification in Multi-channel Measurement Systems	296
7.1.1	The Basic Concept	296
7.1.2	On-Line Identification at Engine Test Benches	300
7.1.3	Auto-Adaptation of Models to a Similar Test Object	305
7.1.4	Two Further Examples in Non-linear Dynamic System Identification	308
7.2	Prediction of NO _x Emissions	310
7.2.1	Motivation	310
7.2.2	Experimental Setup	311
7.2.3	Some Results	314
7.2.4	Further NO _x Prediction Results	317
7.3	Prediction of Resistance Values at Rolling Mills	319
7.3.1	Motivation	319
7.3.2	Experimental Setup	320
7.3.3	Some Results	321
8	On-Line Fault and Anomaly Detection	325
8.1	On-Line Fault Detection in Multi-channel Measurement Systems	326
8.1.1	Motivation	326
8.1.2	The Basic Concept	327
8.1.3	On-Line Fault Detection Strategy with EFS	329
8.1.4	Fault Isolation and Correction	336
8.1.5	Application to Plausibility Analysis and Failure Detection at Engine Test Benches	339
8.1.6	An Alternative Concept for On-Line Fault Detection and Diagnosis	343
8.2	On-Line Anomaly Detection in Time Series Data	345
8.2.1	Motivation and State of the Art	345
8.2.2	Methodologies and Concept	347
8.2.3	Application to Injection Moulding Machines	351
8.3	Noise Detection on Analogue Tapes	353
9	Visual Inspection Systems	357
9.1	On-Line Image Classification in Surface Inspection Systems	358
9.1.1	Motivation	358
9.1.2	The Framework and Its Components	359
9.1.3	Experimental Setup on Three Different Application Scenarios	362

9.1.4	Off-Line Results	368
9.1.5	Impact of On-Line Evolution of (Fuzzy) Image Classifiers	370
9.1.6	Impact of Active Learning and Feature Weighting during Classifier Evolution	372
9.1.7	Impact of Incremental Classifier Fusion	375
9.2	Emotion-Based Texture Classification	379
9.2.1	Motivation	379
9.2.2	Human Perception Modelling (State of the Art)	380
9.2.3	Machine-Learning Based Modelling	381
9.2.4	Experimental Setup	386
9.2.5	Some Results	388
10	Further (Potential) Application Fields	393
10.1	Further Applications	394
10.1.1	eSensors	394
10.1.2	Autonomous Tracking of Objects in Video Streams	395
10.1.3	Adaptive Knowledge Discovery in Bio-informatics	396
10.1.4	Dynamic Forecasting in Financial Domains	397
10.2	Potential (Future) Application Fields – An Outlook	400
10.2.1	Adaptive Open-Loop Control	400
10.2.2	Chemometric Modelling	402
10.2.3	Enhanced Interactive Machine Learning (IML)	405
	Epilog – Achievements, Open Problems and New Challenges in EFS	411
	References	415
	Index	439