## **Contents**

## Preface ix

| 1     | Introduction 1                                                 |  |  |
|-------|----------------------------------------------------------------|--|--|
| 1.1   | Overview of Integrated Smart Micro-systems 1                   |  |  |
| 1.1.1 | The Progress of Portable Smart Micro-systems 2                 |  |  |
| 1.1.2 | Integrated Smart Micro-systems Toward Healthcare Monitoring 4  |  |  |
| 1.2   | Three Core Units of Smart Micro-systems 5                      |  |  |
| 1.2.1 | Triboelectric Nanogenerator (Energy-Harvesting Unit) 5         |  |  |
| 1.2.2 | Solid-State Supercapacitors (Energy-Storage Unit) 9            |  |  |
| 1.2.3 | Strain Sensors (Functional Sensing Unit) 12                    |  |  |
| 1.3   | The Progress of the Integration of Smart Micro-systems 15      |  |  |
| 1.3.1 | Self-Charging Power Unit 16                                    |  |  |
| 1.3.2 | Self-Driven Monitor Patch 18                                   |  |  |
| 1.3.3 | Self-Powered Sensing Platform 20                               |  |  |
| 1.4   | The Progress of Applications of Integrated Smart Micro-systems |  |  |
| 1.4.1 | Real-Time Health Monitoring 22                                 |  |  |
| 1.4.2 | Multifunctional Human-Machine Interaction 24                   |  |  |
| 1.4.3 | Assisted Precision Therapy 26                                  |  |  |
| 1.5   | Scope and Layout of the Book 28                                |  |  |
| 1.5.1 | Scope of the Book 29                                           |  |  |
| 1.5.2 | Layout of the Book 31                                          |  |  |
|       | Abbreviations 33                                               |  |  |
|       | References 33                                                  |  |  |
| 2     | Core Units of Smart Micro-systems 39                           |  |  |
| 2.1   | Triboelectric Nanogenerators for Energy Harvesting 39          |  |  |
| 2.1.1 | Single-electrode Triboelectric Nanogenerator 40                |  |  |
| 2.1.2 | Freestanding Triboelectric Nanogenerator 44                    |  |  |
| 2.2   | Supercapacitors for Energy Storage 50                          |  |  |
| 2.2.1 | Wearable Supercapacitor 50                                     |  |  |
| 2.2.2 | Planar Micro-supercapacitor 54                                 |  |  |
| 2.3   | Piezoresistive Sensors for Function Sensing 61                 |  |  |
| 2.3.1 | Conductive Sponge-Based Piezoresistive Sensor 61               |  |  |



| Contents |                                                                 |
|----------|-----------------------------------------------------------------|
| 2.3.2    | Porous Conductive Elastomer-Based Piezoresistive Sensor 67      |
| 2.4      | Summary 72                                                      |
|          | Abbreviations 73                                                |
|          | References 74                                                   |
| _        |                                                                 |
| 3        | Sandwiched Self-charging Power Unit 77                          |
| 3.1      | Self-charging Power Unit 77                                     |
| 3.1.1    | Working Principle 78                                            |
| 3.1.2    | Theoretical Analysis 79                                         |
| 3.2      | Enhancement of TENG Based on Surface Optimization 81            |
| 3.2.1    | Formation Mechanism of Wrinkle Structure 81                     |
| 3.2.2    | Fabrication Process and Morphology Characterization 82          |
| 3.3      | Flexible Paper Electrode–Based Supercapacitor 83                |
| 3.3.1    | Percolation Theory 84                                           |
| 3.3.2    | Flexible CNT-Paper Electrode 85                                 |
| 3.3.3    | Fabrication Process and Morphology Characterization 87          |
| 3.4      | Performance Characterization of SCPU 88                         |
| 3.4.1    | Evaluation of TENG 88                                           |
| 3.4.2    | Evaluation of SC 92                                             |
| 3.4.3    | Self-charging Performance 93                                    |
| 3.5      | Applications of SCPU 94                                         |
| 3.5.1    | Power Supply for Low-power Electronics 94                       |
| 3.5.2    | Smart Display of Electrochromic Device 95                       |
| 3.6      | Summary 96                                                      |
|          | Abbreviations 97                                                |
|          | References 98                                                   |
| 4        | All-in-one Self-driven Monitor Patch 101                        |
| 4.1      | Self-driven Monitor Patch 102                                   |
| 4.1.1    | Working Principle 102                                           |
| 4.1.2    | Theoretical Analysis 102                                        |
| 4.2      | Fabrication Process of Self-driven Monitor Patch 104            |
| 4.2.1    | "Solution-Evaporation" Method 105                               |
| 4.2.2    | Modulation of Parameters and Morphologies 106                   |
| 4.2.3    | Integrated Fabrication 108                                      |
| 4.3      | Performance Characterization of Self-driven Monitor Patch 110   |
| 4.3.1    | Evaluation of PRS 110                                           |
| 4.3.2    | Evaluation of MSC 114                                           |
| 4.4      | Applications of Self-driven Monitor Patch 118                   |
| 4.4.1    | Real-time Health Monitoring 118                                 |
| 4.4.2    | Personalized Human-Machine Interaction 118                      |
| 4.4.3    | Static Pressure Distribution and Dynamic Tactile Trajectory 120 |
| 4.5      | Summary 123                                                     |
|          | Abbreviations 124                                               |
|          | References 125                                                  |

| 5       | Fully Integrated Self-powered Sweat-Sensing Platform 127      |  |  |
|---------|---------------------------------------------------------------|--|--|
| 5.1     | Structural Design of Self-powered Sweat-Sensing Platform 128  |  |  |
| 5.2     | Freestanding Triboelectric Nanogenerator 130                  |  |  |
| 5.2.1   | Working Principle and Structural Design 130                   |  |  |
| 5.2.2   | Performance Characterization 133                              |  |  |
| 5.3     | Potentiometric Electrochemical Sensing Unit 135               |  |  |
| 5.3.1   | Working Principle 136                                         |  |  |
| 5.3.2   | Microfluidic Structural Design 138                            |  |  |
| 5.3.3   | Fabrication Process 139                                       |  |  |
| 5.3.4   | Performance Characterization 141                              |  |  |
| 5.3.4.1 | Sensitivity 141                                               |  |  |
| 5.3.4.2 | Selectivity 142                                               |  |  |
| 5.3.4.3 | Cycling Repeatability 142                                     |  |  |
| 5.4     | System-level Integrated Circuit Module 143                    |  |  |
| 5.4.1   | Schematic Diagram and Operation Flow Analysis 145             |  |  |
| 5.4.2   | Performance Characterization 146                              |  |  |
| 5.5     | Applications of Fully Integrated Self-powered Sweat-Sensing   |  |  |
|         | Platform 149                                                  |  |  |
| 5.5.1   | Validation of Flexible Sensing Unit 149                       |  |  |
| 5.5.2   | On-body Evaluation for Dynamic Sweat Analysis 151             |  |  |
| 5.6     | Summary 155                                                   |  |  |
|         | Abbreviations 156                                             |  |  |
|         | References 156                                                |  |  |
| 6       | Multimodal Sensing Integrated Health-Monitoring               |  |  |
|         | System 159                                                    |  |  |
| 6.1     | Multimodal Sensing Platform 160                               |  |  |
| 6.1.1   | Structural Design 160                                         |  |  |
| 6.1.2   | Fabrication and Morphology of All-Laser-Engraved Process 161  |  |  |
| 6.2     | LEG-based Chemical Sensor for UA and Tyr Detection 165        |  |  |
| 6.2.1   | Performance Characterization 165                              |  |  |
| 6.2.2   | Reliability and Selectivity 168                               |  |  |
| 6.3     | LEG-based Physical Sensor for Vital Signs Monitoring 171      |  |  |
| 6.3.1   | Evaluation of LEG-based Temperature Sensor 171                |  |  |
| 6.3.2   | Microfluidic Structural Design 173                            |  |  |
| 6.4     | System-Level Circuity Module 175                              |  |  |
| 6.4.1   | Design and Block Diagram 176                                  |  |  |
| 6.4.2   | Signal Processing and Validation 179                          |  |  |
| 6.5     | On-body Evaluation of Integrated Health-Monitoring System 181 |  |  |
| 6.5.1   | Sweat Analysis at Different Body Parts 181                    |  |  |
| 6.5.2   | Multimodal Real-Time Continuous In Situ Measurement 183       |  |  |
| 6.6     | Health-Monitoring System for Non-invasive Gout Management 184 |  |  |
| 6.6.1   | Purine-Rich Diets and Gout 185                                |  |  |
| 6.6.2   | Personalized Non-Invasive Gout Management 185                 |  |  |

| viii | Contents |
|------|----------|
|------|----------|

| 6.7 | Summary 189                                                                  |
|-----|------------------------------------------------------------------------------|
|     | Abbreviations 190                                                            |
|     | References 190                                                               |
| 7   | Progress and Perspectives 193                                                |
| 7.1 | The Progress of the Micro-systems 193                                        |
| 7.2 | Perspectives of the Micro-systems 195<br>Abbreviations 196<br>References 196 |

index 199