Contents

Acknowledgements — VII Preface — IX About the authors — XVII				
			Chapter :	
				search approach for the general linear integer model — 1
1.0	Introduction —— 1			
1.1	The Linear Integer Programming (LIP) Model and some			
	preliminaries —— 2			
1.2	The concept of segments —— 3			
1.2.1	Selection of the segment interval —— 4			
1.2.2	Decreasing the objective value —— 6			
1.2.3	Original variable sum limit —— 7			
1.2.4	Determination of h_0 value —— 8			
1.3	Segment-search approach —— 8			
1.3.1	General integer model —— 8			
1.4	Mixed integer model —— 9			
1.5	Numerical illustration —— 11			
1.5.1	General linear integer model: Example 1.1 —— 11			
1.5.2	Solution by the proposed segment-search algorithm —— 12			
1.5.3	Mixed integer model: Example 1.2 —— 13			
1.6	Conclusions — 16			
	References —— 17			
Chapter 2	2			
Improved	l solution method for the 0-1 GAP model 19			
2.0	Introduction —— 19			
2.1	Generalized assignment problem —— 20			
2.2	Relaxation process —— 21			
2.3	GAP model in relaxed form —— 21			
2.4	The relaxed transportation model —— 22			
2.5	GAP transportation branch and bound algorithm —— 23			
2.5.1	Optimality —— 23			
2.5.2	Numerical illustration —— 23			
2.6	Improved solution method for GAP —— 28			
2.6.1	Proposed algorithm —— 28			
2.6.2	Strength of proposed algorithm —— 28			

Reconsider the same numerical example —— 28

2.6.3

2.7	Conclusions —— 30
	References —— 31
Chamter 2	
Chapter 3	an antimal integral calution ever the integral nell-hadron. Two
	an optimal integer solution over the integer polyhedron – Two proaches —— 33
- '	Introduction —— 33
3.0	
3.1	Background information — 34
3.1.1	Geometry of integer-points in a convex space defined by the linear constraints —— 35
217	Optimality of the solution —— 37
3.1.2	•
3.2	Young's primal integer programming approach (1965) — 37
3.2.1	Numerical Illustration of Young's primal approach — 38 The Integer Polyhedren Search Algorithm (IDSA) 43
3.3	The Integer Polyhedron Search Algorithm (IPSA) —— 43
3.3.1	Integer Polyhedron Search Algorithm (IPSA) by Munapo, Kumar and Khan (2010) —— 46
3.4	
	More numerical illustrations of IPSA —— 47
3.5	Concluding remarks — 50 References — 50
	kererences —— 50
Chapter 4	
	ble sum limits to solve the knapsack problem —— 53
4.0	Introduction —— 53
4.1	The knapsack model —— 54
4.2	Development of the variable range for a knapsack problem —— 54
4.2.1	Variable range — 54
4.2.2	Objective value upper bound — 54
4.2.3	Objective value lower bound —— 55
4.2.4	How to overcome this challenge? —— 56
4.2.5	Variable sum bounds and subsets — 56
4.2.6	Subsets of variable sum bound — 57
4.3	Variable sum bounding algorithm —— 58
4.3.1	Algorithm —— 58
4.4	Numerical illustration —— 60
4.5	Conclusions — 63
	References —— 63
Chapter 5	aulatia agustian fau limagu intagras
	eristic equation for linear integer programs —— 65
5.0	Introduction —— 65
5.1	Development of a characteristic equation for a pure linear integer
	program — 67

5.1.1	Analysis of a trivial example —— 67
5.1.2	The characteristic equation — 71
5.1.3	Some interesting properties of the CE — 72
5.1.4	An algorithm to find the k^{th} best optimal solutions, $k \ge 1$ using the
	CE approach —— 73
5.1.5	Features of the CE —— 74
5.1.6	A numerical illustration —— 75
5.1.7	An ill conditioned integer programming problem —— 77
5.1.8	Analogies of the characteristic equation with other systems and
	models — 78
5.2	The ordered tree method for an integer solution of a given CE by
	Munapo et al. (2009) — 79
5.2.1	A Numerical illustration of the ordered tree search technique —— 81
5.3	The CE for the binary integer program —— 82
5.3.1	Numerical illustration of a binary program —— 82
5.4	CE applied to a bi-objective integer programming model —— 84
5.4.1	Numerical illustration for bi-objective model —— 84
5.5	Characteristics equation for mixed integer program —— 86
5.5.1	Mathematical developments —— 86
5.5.2	A characteristic equation approach to solve a mixed-integer
	program 88
5.5.3	Numerical illustration – MIP 1 —— 89
5.6	Concluding remarks —— 92
	References —— 93
Chapter 6	
Random sea	arch method for integer programming —— 95
6.0	Introduction —— 95
6.1	The random search method for an integer programming
	model —— 96
6.1.1	Integer linear program, notation, and definitions —— 96
6.1.2	The random search method for integer programming —— 97
6.1.3	Reduction in the region for search —— 98
6.1.4	The algorithm —— 98
6.1.5	Numerical illustrations for an integer program —— 99
6.2	Random search method for mixed-integer programming —— 101
6.2.1	The mixed-integer programming problem, notation and
	definitions —— 101
6.2.2	Steps of the random search algorithm — 102
6.2.3	Numerical illustration —— 103
6.3	An extreme point mathematical programming problem — 104

6.3.1	Mathematical formulation of an extreme point mathematical programming model —— 105
6.3.2	Problems that can be reformulated as an extreme point
0.7.2	mathematical programming model: Some applications —— 106
6.4	Development of the random search method for the EPMP
0.4	model —— 109
6.4.1	Randomly generated solution —— 109
6.4.2	The number of search points —— 109
6.4.3	Reduction in search region or a successful solution —— 109
6.4.4	A feasible pivot for an EPMP — 110
6.4.5	Algorithmic steps —— 111
6.4.6	Illustrative example 6.4 —— 111
6.5	Conclusion —— 115
	References —— 116
Chapter 7	
•	al linear integer models and related problems 119
7.0	Introduction —— 119
7.1	The assignment problem —— 120
7.1.1	Features of the assignment model —— 121
7.1.2	Kuhn-Tucker conditions —— 122
7.1.3	Transportation simplex method —— 122
7.1.4	Hungarian approach —— 122
7.1.5	Tsoro and Hungarian hybrid approach —— 123
7.2	See-Saw rule and its application to an assignment model —— 123
7.2.1	Starting solutions —— 125
7.2.2	See-Saw algorithm —— 125
7.2.3	Numerical Illustration 1 —— 125
7.2.4	Proof of optimality —— 127
7.3	The transportation problem —— 127
7.3.1	Existing methods to find a starting solution for the transportation
	problem —— 128
7.3.2	Transportation simplex method —— 129
7.3.3	Network simplex method —— 129
7.3.4	The method of subtractions for an initial starting solution —— 130
7.4	The See-Saw algorithm for a general transportation problem —— 138
7.4.1	A General transportation model —— 138
7.4.2	The assignment-transportation model relationship —— 139
7.4.3	See-Saw rule for the transportation model —— 140
7.4.4	Initial position before the See-Saw move —— 141
7.4.5	See-Saw algorithm for the general transportation model —— 142
7.4.6	Numerical illustration of transportation model —— 143

7.5	Determination of k^{th} ($k \ge 2$) ranked optimal solution — 149
7.5.1	Murthy's (1968) approach —— 150
7.5.2	Minimal cost assignment approach for the ranked solution —— 15:
7.6	Concluding remarks —— 153
	References —— 153
Chapter 8	
The travel	ling salesman problem: Sub-tour elimination approaches and
algorithm	s —— 155
8.1	Introduction —— 155
8.2	Binary formulation of the TSP —— 156
8.2.1	Sub-tour elimination constraints —— 157
8.2.2	Some conceptual ideas and typical structure of the TSP
	model 158
8.2.3	Changing model (8.5) from linear integer to quadratic convex
	program (QP) —— 160
8.2.4	Convexity of $f(\bar{X})$ — 161
8.2.5	Complexity of convex quadratic programming —— 162
8.2.6	Other considerations —— 162
8.3	Construction of sub-tour elimination cuts —— 163
8.4	Proposed algorithm —— 164
8.4.1	Numerical illustration —— 164
8.4.2	Conclusion —— 166
8.5	The transshipment approach to the travelling salesman problem —— 167
8.5.1	Conventional formulation —— 167
8.5.2	Some important properties of a totally unimodular matrix — 167
8.5.3	Breaking a TSP into transshipment sub-problems —— 168
8.5.4	General case – transshipment sub-problem —— 169
8.5.5	Standard constraints —— 170
8.5.6	Infeasibility —— 171
8.6	The transshipment TSP linear integer model —— 171
8.6.1	Numerical illustration —— 172
8.6.2	The formulated transshipment TSP linear integer model —— 172
8.7	Conclusions —— 179
	References —— 179

Index —— 181