Contents

V۸	١.	ıme	1

Preface xvii
About the Editors xix

A Glance On Oil Producing Plants, Pretreatment and Bioenergy Production Using Oil Producing Plant 1
Suraini Abd-Aziz and Misri Gozan
References 9

Part I Availability of Oil Producing Plants 11

4	Demand and Sustainability of Pauli Oit Plantation 13
	Suraini Abd-Aziz, Misri Gozan, Mohamad Faizal Ibrahim, and Lai-Yee Phang
2.1	Introduction 13
2.2	Production and Consumption of Global Palm Oil Industry 14
2.3	Major Hindrances in Sustainability Considerations 17
2.3.1	Environmental Issues 18
2.3.2	Socioeconomic Issues 19
2.4	Future Sustainability Implications of the World Largest Palm Oil
	Producers 20
2.4.1	Indonesia 21
2.4.2	Malaysia 22
2.5	Sustainable Versus Unsustainable Palm Oil Toward Carbon Neutral
	Emissions 23
2.6	Conclusions 24
	References 25
3	Planting and Harvesting Jatropha 29
	Penjit Srinophakun, Anna Saimaneerat, and Vipa Hongtrakul
2 1	Introduction 20

KUBP 78-9 and KUBP 202 Varieties 30

3.2

vi	Contents	
	3.2.1	Plant Spacing 31
	3.2.2	Plantation Layout and Data Collection 31
	3.2.3	Fertilizer Application 33
	3.2.4	Cutting Management 35
	3.2.5	Weed Control 35
	3.2.6	Insect, Pest, and Disease Control 37
	3.3	Jatropha Performance 38
	3.3.1	Plant Height and Canopy Width 38
	3.3.2	First Flowering Day 40
	3.3.3	Rainfall 41
	3.3.4	Harvesting 43
	3.3.5	Seed Yield and Weight of 100-Seed 45
	3.4	Conclusions 47
		Acknowledgments 47
		References 47
	4	Castor Oil (Ricinus communis) 51
	7	Castor Oil (Ricinus communis) 51 Is Fatimah, Suresh Sagadevan, Baranya Murugan, and Oki Muraza
	4.1	Source and Cultivation of the Castor Plant 51
	4.1	Castor Oil Production 54
	4.2.1	Cultivating and Harvesting Ricinus communis 54
	4.2.1	Extraction of Castor Oil 57
	4.2.3	Refining of Castor Oil 59
	4.2.3	Standardization of Castor Oil 60
	4.2.4	Castor Oil Products 60
	4.3.1	Hydrogenated Castor Oil 60
	4.3.1	Biodiesel from Castor Oil 61
	4.3.3	Polymer from Castor Oil 67
	4.3.4	Plasticizer from Castor Oil 67
	4.3.4	Biolubricant from Castor Oil 69
	4.3.6	Pharmaceutical Solvent from Castor Oil 72
	4.4	Conclusions 73
	7.7	References 73
	5	Nyamplung (Calophyllum inophyllum) Oil 79 Nurul Sabrena Hanafi, Misri Gozan, and Suraini Abd-Aziz
	<i>5</i> 1	Transferation 70

	Nurul Sabrena Hanafi, Misri Gozan, and Suraini
5.1	Introduction 79
5.2	Nyamplung (Calophyllum inophyllum) 80
5.2.1	Characteristic of Nyamplung Seed Oil 81
5.2.2	Extraction of Nyamplung Seed Oil 82
5.2.2.1	Mechanical Extraction 83
5.2.2,2	Solvent Oil Extraction (Chemical Extraction)

5.2.3	Applications of Nyamplung Seed Oil 83
5.2.3.1	Medicinal Purposes 84
5.2.3.2	Cosmetic Ingredient 84
5.2.3.3	Biodiesel 85
5.3	Potential of Nyamplung Seed Oil as Biolubricant 86
5.3.1	Reactions Involved in Biolubricants Manufacturing 86
5.3.1.1	Transesterification 86
5.3.1.2	Epoxidation 87
5.3.2	Emerging Area of Biolubricant Industries Using Alternative Oil/Seed
	Oil 88
5.3.2.1	Applications of Biolubricant 89
5.3.2.2	Chemical Modification of Biolubricant 89
5.4	Conclusions 91
	References 92
6	Coconut Oil 99
	Muhammad A. Darmawan, Kiman Siregar, and Misri Gozan
6.1	Introduction 99
6.2	Extraction Process of Coconut Oil 100
6.2.1	Dry Extraction Process 100
6.2.1.1	Coconut Testa Oil 102
6.2.1.2	Copra Oil 102
6.2.2	Coconut Refining Process 102
6.2.2.1	Chemical Refining Process 102
6.2.2.2	Physical Refining Process 103
6.2.3	Wet Extraction Process 103
6.2.3.1	Heat and Cold Extraction of Virgin Coconut Oil 103
6.2.3.2	Fermentation and Enzymatic Process of Virgin Coconut Oil 104
6.3	Physicochemical and Chemical Compositions of Coconut Oil 105
6.4	The Properties of Coconut Fruit 108
6.5	Health Benefits of Virgin Coconut Oil 111
6.5.1	Virgin Coconut Oil Effects on Artery Disease 111
6.5.2	Antioxidant Activity of Virgin Coconut Oil 111
6.5.3	Antidiabetic Activity of Virgin Coconut Oil 112
6.5.4	Antimicrobial Activity of Virgin Coconut Oil 112
6.6	Coconut Oil as Fuel 112
6.7	Coconut Oil as Cooking Oil 113
6.8	Productivity and Problems in Coconut Plantation 114
6.8.1	Productivity of Coconut Plantation in Indonesia 114
6.8.2	Problems of Coconut Plantation and Industry in Indonesia 115
6.9	Conclusions 116
	References 116

Part II	Pretreatment	123
---------	--------------	-----

7	Efficient Physical and Chemical Pretreatment of
	Lignocellulosic Biomass 125
7.1	Liping Tan, Jian Zhao, and Yinbo Qu
7.1 7.2	Introduction 125 Type of Physical and Chamical Protreatment 126
7.2 7.2.1	Type of Physical and Chemical Pretreatment 126
7.2.1	Bisulfite Pretreatment 126 Formiline Pretreatment 128
7.2.2	
7.2.3 7.2.4	Hydrothermal Pretreatment 128 Deep Eutectic Solvents (DES) Pretreatment 129
7.2.4	Deep Eutectic Solvents (DES) Pretreatment 129 Comparison of Physical and Chemical Pretreatment Methods 130
7.2.5	Combinations of Physical and Chemical Pretreatment 133
7.2.0	Conclusions 135
1.5	Acknowledgment 135
	References 135
	References 133
8	Ionic Solution Pretreatment of Lignocellulosic Biomass 141
Ū	Chien-Yuan Su, Wei-Chun Hung, Chiung-Fang Liu, Bo-Jhih Lin, and
	Hou-Peng Wan
8.1	Overview of Biomass Hydrolysis 141
8.1.1	Acid Hydrolysis 143
8.1.2	Ionic Liquid Hydrolysis 144
8.1.2.1	Development and Principle of Ionic Liquid Hydrolysis 144
8.1.2.2	Ionic Solution Hydrolysis 145
8.2	Case Study of Ionic Solution Hydrolysis 147
8.2.1	Feedstock Analysis and Dissolution Efficiency 147
8.2.2	Sugar Yields from Various Biomass via Ionic Solution Hydrolysis 150
8.2.3	Purification of Hydrolysis Products 151
8.2.3.1	Liquid-Liquid Extraction 151
8.2.3.2	Reactive Distillation 151
8.2.3.3	Ion Exclusion Chromatography and Membrane Filtration 153
8.2.4	Comparison of Hydrolysis Pretreatment Technologies and
	Summary 155
	Acknowledgment 157
	References 157
9	Biological Pretreatment of Lignocellulosic Biomass 161
,	Sehanat Prasongsuk, Wichanee Bankeeree, Pongtharin Lotrakul,
	Suraini Abd-Aziz, and Hunsa Punnapayak
9.1	Introduction 161
9.2	Microorganisms and Enzymes Involved in Biological Pretreatment 162
9.2.1	Fungal Pretreatment 164
9.2.2	Enzymatic Pretreatment 165
9.2.2	Factors Affecting Biological Pretreatment 168
7.5	1 action 1 meeting protogreat i reneamient 100

9.3.1	Cultivation Condition 168	
9.3.2	Incubation Time 168	
9.3.3	Moisture Content 168	
9.3.4	pH and Temperature 168	
9.4	Biological Pretreatment of Lignocellulosic Biomass into Value-Add Products 169	led
9.4.1	Bioconversion into Fermentable Sugar for Bioethanol Production	169
9.4.2	Biogas Production 171	
9.5	Conclusions 172	
	Acknowledgment 173 References 173	
10	Lignin-Degrading Enzymes 179	
10.1	Adriana C. Lee, Mohamad Faizal Ibrahim, and Suraini Abd-Aziz	
10.1	Introduction 179	
10.2	Lignin Types and Structures 180	
10.3	Lignin-Degrading Enzymes (LDEs) 181	
10.3.1	Lignin Peroxidase or Ligninase (LiP) 181	
10.3.2	Manganese Peroxidase (MnP) 183	
10.3.3	Versatile Peroxidase (VP) 185	
10.3.4	Dye-Decolorizing Peroxidases (DyPs) 185 Laccase 186	
10.3.5 10.3.6	New Enzymatic Delignification Activities 189	
10.3.6.1	β-Etherases (Glutathione-Dependent Lignin-Degrading Enzyme)	189
10.3.6.2	Biphenyl-Binding Enzyme Cleavage Systems 190	109
10.3.6.3	Enzyme <i>O</i> -Demethylation Networks 190	
10.3.6.4	Activities of General Oxidative 190	
10.3.0.4	Application of LDE in Biorefinery Pretreatment 191	
10.5	Conclusions 194	
10.5	References 194	
11	Enzymes for Hemicellulose Degradation 199	
	Wichanee Bankeeree, Sehanat Prasongsuk, Pongtharin Lotrakul,	
	Suraini Abd-Aziz, and Hunsa Punnapayak	
11.1	Introduction 199	
11.2	Hemicellulolytic Enzymes 200	
11.3	Xylanolytic Enzyme Classification 201	
11.4	Catalytic Mechanisms 204	
11.5	Sources and Properties of Xylanolytic Enzymes 205	
11.5.1	Bacterial Xylanolytic Enzymes 205	
11.5.2	Fungal Xylanolytic Enzymes 207 Patential Piotochy plagical Applications 200	
11.6	Potential Biotechnological Applications 209	
11.6.1	Biorefinery 209	
11.6.2 11.6.3	Pulp and Paper Industry 211 Biotransformation 212	
11.0.3	DIGHANSIOI INANON 212	

x	Contents	
	11.7	Conclusions 213
		Acknowledgment 214
		References 214
	12	Calliulana fram Oil Dalm Biannan 221
	12	Cellulase from Oil Palm Biomass 221
	12.1	Jeong Eun Hyeon and Sung Ok Han Piological Protreatment and Colludors 221
	12.1	Biological Pretreatment and Cellulase 221 Cellulases 222
	12.2.1	Endoglucanase (1,4-p-glucan-4-glucanohydrolase; EC 3.2.1.4) 223
	12.2.1	Exocellobiohydrolase (1,4-p-glucan glucohydrolase; EC 3.2.1.4) 223
	12.2.3	β-Glucosidase (D-glucoside glucohydrolase; EC 3.2.1.74) 224
	12.3	Synergistic Effect by Combination of Various Cellulases 226
	12.3.1	Cellulosome 226
	12.3.2	Artificial Cellulosome 229
	12.4	Industrial Strain for Cellulases Production 230
	12.4.1	Cellulases Production by Fungal Cellulase System 230
	12.4.2	Cellulases Production by Bacterial Cellulase Systems 232
	12.5	Conclusions 233
	12.5	Acknowledgment 233
		References 234
		Part III Generation of Bioenergy 239
	13	Biogas Generation in the Palm Oil Mill 241
		Muhammad Y. Arya, Muhammad A. Kholiq, Udin Hasanudin, and Misri Gozan
	13.1	Introduction 241
	13.2	POME Characterization 243
	13.3	POME Pretreatment 243
	13.3.1	Acidified POME 246
	13.3.2	Ash Addition 246
	13.3.3	Coagulation–Flocculation 248
	13.3.4	De-oiling 248
	13.3.5	Dissolved Air Flotation 249
	13.3.6	POME Sedimentation 249
	13.3.7	Thermal Pretreatment 249
	13.3.8	Other Pretreatments 249
	13.4	Digester Type 250
	13.4.1	Anaerobic Pond/Lagoon 250
	13.4.2	Anaerobic Filtration 251
	13.4.3	Fluidized Bed Reactor 253

Upflow Anaerobic Sludge Blanket (UASB) 253

Anaerobic Baffled Reactor 253

Operating Conditions 253
Substrate Characterization 253

13.4.4

13.4.5 13.5

13.5.1

13.5.2	pH and Alkalinity 254
13.5.3	Organic Loading Rate (OLR) and Hydraulic Retention Time (HRT) 254
13.5.4	Temperature 255
13.5.5	Other Operating Conditions 256
13.6	Biogas Purification 257
13.7	Conclusions 257
	References 258
14	Biodiesel Refinery from Jatropha 265
	Penjit Srinophakun, Anusith Thanapimmetha, and Maythee Saisriyoot
14.1	Introduction 265
14.2	Jatropha Biodiesel 265
14.2.1	Biodiesel Standard 273
14.2.2	Oxidation Stability 273
14.2.3	The Changes of Biodiesel Properties During Long-Term Storage 278
14.3	Conclusions 281
	Acknowledgment 282
	References 283
15	Bioethanol from Oil Producing Plants 287
	Yu-Shen Cheng, Kittipong Rattanaporn, and Malinee Sriariyanun
15.1	Introduction 287
15.2	Plant Components Derived from Oil Producing Plants as the Biomass
	Resources 290
15.2.1	Oil Producing Plants 290
15.2.2	Oil Meals/Cakes Derived from Oilseed as Lignocellulosic Biomass 291
15.2.3	Other Lignocellulosic Residues Derived from Oil Plants 293
15.3	Conversion of Oil Plant-Derived Lignocellulosic Biomass to
	Bioethanol 294
15.3.1	Structure of Lignocellulosic Biomass Derived from Oil Plants 294
15.3.2	Lignocellulosic Biomass Pretreatment and Enzymatic Hydrolyses 296
15.3.3	Bioethanol Production from Oil Producing Plant 299
15.4	Conclusions 300
	References 300
16	Biobutanol Production from Oil Palm Biomass 307
	Mohamad Faizal Ibrahim, Nor A. Shaharuddin, Nurul H. Alias,
	Mohd A. Jenol, Suraini Abd-Aziz, and Lai-Yee Phang
16.1	Introduction 307
16.2	Oil Palm Biomass 308
16.3	Biobutanol 310
16.4	Biobutanol Production 312
16.4.1	Biobutanol-Producing Bacteria 312
16.4.1.1	Clostridium sp. 312
16.4.1.2	Lactobacillus 314

xii	Contents
-----	----------

16.4.1.3	Escherichia coli 315
16.4.2	Factors Affecting Biobutanol Production 315
16.4.2.1	Effect of Nitrogen Source 315
16.4.2.2	Effect of pH 315
16.4.2.3	Effect of Temperature 316
16.4.2.4	Effect of Carbon Source 316
16.5	Biobutanol Production from Oil Palm Biomass 317
16.6	Conclusions 320
	References 321
17	Biochar from Oil Palm Biomass 325
	Z. Nahrul Hayawin and Juferi Idris
17.1	Introduction 325
17.2	Oil Palm Biomass in Malaysia 326
17.3	Oil Palm Biochar Production 326
17.3.1	Mechanistic Aspects of Pyrolysis 326
17.3.2	Pyrolysis Process Parameters Affecting the Quality and Quantity of
	Biochar Production 327
17.3.3	Technologies for Biochar Production 329
17.3.3.1	Conventional Pyrolysis 329
17.3.3.2	Microwave Pyrolysis 329
17.3.4	Application of Biochar 331
17.3.4.1	
17.3.4.2	Agricultural Application 331
17.3.4.3	Energy Purposes 332
17.4	Safety and Environmental Considerations 333
17.4.1	Safety Consideration and Environmental Impacts in the Application of
	Biochar 333
17.4.2	Safety Consideration and Environmental Impact in Handling and
	Storing Oil palm Biomass Feedstock 334
17.4.3	Safety Consideration and Environmental Impacts in Biochar Production
	by Pyrolysis Process 334
17.5	Biochar Utilization and Marketing 335
17.5.1	Quality of Biochar 335
17.5.2	Physical and Chemical Characteristics of Biochar 335
17.5.3	Adsorption Capacity 336
17.5.4	Economic Analysis 336
17.5.5	Major Challenges in Promoting Biochar 337
17.5.5.1	Cost and Production Complications 337
17.5.5.2	Environmental Factors 338
17.5.5.3	Public Acceptance 338
17.5.5.4	Marketability and Commercialization Issues 339
17.6	Conclusions 339
	References 339

18	Fuel Pellet from Oil Producing Plants 345 Rizal Alamsyah
18.1	Introduction 345
18.2	Production of Fuel Pellet 347
18.2.1	Energy and Proximate Analysis 347
18.2.2	Size Reduction and Screening 348
18.2.3	Drying and Weighing 348
18.2.4	Mixing 349
18.2.5	Pelletizing 349
18.2.6	Cooling and Packing 349
18.3	Pellet Quality 350
18.3.1	Ash Content 350
18.3.2	Ash Melting Temperature 351
18.3.3	Length, Diameter, and Bulk Density 351
18.3.4	Dust 352
18.3.5	Caloric Value and Moisture Content 352
18.3.6	Mechanical Durability 352
18.3.7	Nitrogen, Sulfur, Chlorine Content, and Heavy Metals 353
18.4	Pilot Plant-Scale Biomass Pellet Experiment 353
18.5	Gasification of Biomass Pellets to Produce Synthetic Gas (Syngas) and Emission Test $$ 356
18.5.1	Gasification 356
18.5.2	Emissions Test 357
18.6	Biomass Pellet Processing Equipment 359
18.6.1	Chaff Cutter 359
18.6.2	Hammer Mill 361
18.6.3	Cyclone Dust Collector 361
18.6.4	Paddle Mixer 362
18.6.5	Pellet Machine (Pelletizer) 362
18.6.6	Cooler 363
18.6.7	Packing Machine (Bagging Scale) 364
18.7	Conclusions 364
	References 364
19	Biohydrogen from Palm Oil Mill Effluent 369 Safa Senan Mahmod, Peer Mohamed Abdul, and Jamaliah Md. Jahim
19.1	Introduction 369
19.2	Biohydrogen-Producing Bacteria 371
19.3	Strategies to Increase Biohydrogen Production from POME 374
19.3.1	Operating Conditions Optimization: Hydraulic Retention Time (HRT) and Temperature on Biohydrogen Production 374
19.3.1.1	Effect of Temperature 374
19.3.1.2	Effect of Different Hydraulic Retention Times (HRTs) 376
19.3.2	Microbial Cells Immobilization 378
19.3.3	Roles of Additives 380

xiv	Contents

	Volume 2	
	References 383	
19.5	Acknowledgments	383
19.4	Conclusions 383	

Volume 2

Preface *xiii*About the Editors *xv*

A Glance on the Generation of Biobased Chemicals, Bioproducts and Economic Analysis of Oil Producing Plant 387 Misri Gozan and Suraini Abd-Aziz

Part IV Generation of Biobased Chemicals 397

21 Bio-oil from Tobacco Plant 399 Andre F.P. Harahap, Ahmad Fauzantoro, and Misri Gozan

22 Biosurfactant from Oil Producing Plant 421 Zaharah Ibrahim, Siti Halimah Hasmoni, Shafinaz Shahir, Lai-Yee Phang, Nurashikin Ihsan, and Madihah Md Salleh

23 Palm Catanionic Surfactant for Drug Delivery Application 445 Wen Huei Lim, Xiou Shuang Yong, Lai-Yee Phang, and No

Wen Huei Lim, Xiou Shuang Yong, Lai-Yee Phang, and Noorjahan Banu Alitheen

24 Glycerol and Derivatives 469 Erliza Hambali, Rista Fitria, and Vonny I. Sari

25 Biovanillin from Oil Palm Biomass 493 Suraini Abd-Aziz, Mohd Azwan Jenol, and Illy Kamaliah Ramle

26 Diacids from Oil Producing Plant 515 Is Fatimah, Ganjar Fadillah, Oki Muraza, and Teuku M.I. Mahlia

27 Bioplastic Production from Oil Producing Plants 543 Lai-Yee Phang, Mitra Mohammadi, Mohd Azwan Jenol, and Misri Gozan

28 Plant Oil-Based Polyurethane 563 K. H. Badri and Amamer Redhwan

29 Bioresins from Oil Producing Plants 587 Misri Gozan, Agustino Zulys, and Hosta Ardhyananta

Part V	Generation	of Other	Bioproducts	605
--------	------------	----------	-------------	-----

- 30 **Biocompost from Oil Producing Plants** 607 Adibah Yahya, Nurshafika Abd Khalid, and Madihah Md Salleh
- 31 Animal Feed from Oil Producing Plants 631 Siswa Setyahadi
- 32 Amino Acids from Oil Producing Plants 653 Huszalina Hussin, Nurul S. Hanafi, Adriana C. Lee, Madihah Md Salleh, Shu-Cuen Sam, and Suraini Abd-Aziz

Part VI Economics Analysis of Oil Producing Plants 673

- 33 **Technical and Economic Aspects of Oil Producing Plants** 675 Misri Gozan and Lai-Yee Phang
- 34 **Economic Impact** 699 Nugroho A. Sasongko and Rachmawan Budiarto

Index 723