Contents

Introduction --- V

Abbreviations and notations --- XV

1	Financial markets. From discrete to continuous time —— 1
1.1	Financial markets with discrete time —— 2
1.1.1	Description of asset prices as stochastic processes with discrete
	time —— 2
1.1.2	Description of investors' strategies. Self-financing strategies — 4
1.1.3	Arbitrage-free multi-period markets —— 5
1.1.4	Contingent claims. Complete and incomplete markets — 6
1.2	The sequence of discrete-time markets as an intermediate step in the transition to continuous time —— 7
1.2.1	Description of the sequence of financial markets — 7
1.2.2	No-arbitrage and completeness of the sequence of markets with
	discrete time, created by independent random variables. Multiplicative scheme —— 10
1.3	Preliminaries for the financial markets with continuous time —— 19
1.3.1	The notion of self-financing strategy for the models in continuous
	time —— 19
1.3.2	Arbitrage and martingale measures — 22
1.3.3	Hedging strategies — 25
1.3.4	Complete markets —— 26
1.4	From discrete to continuous time. The limit process is a geometric Brownian motion —— 27
1.4.1	Pre-limit sequence of the models with discrete time in the multiplicative scheme —— 27
1.4.2	Geometric Brownian motion —— 28
1.4.3	Functional central limit theorem for the financial markets with discrete
	time represented by the multiplicative scheme —— 29
1.4.4	Black–Scholes formula as the result of limit transition. Option pricing —— 35
1.4.5	"Delta" as an example of Greek functionals —— 39
1.5	Weak convergence of Greek symbol "Delta" for prices of European
	options: from discrete time to continuous —— 40
1.5.1	Pre-limit "Delta" and the method of the common probability
	space —— 41
1.5.2	Some preliminary results —— 41
1.5.3	Convergence of Δ_n^k to $\Delta(x, T-t)$ — 44
1.6	General schemes of diffusion approximation — 50

1.6.1	General functional limit theorem for diffusion approximation —— 50
1.6.2	Functional limit theorem for diffusion approximation of the sums and
	the products of random variables —— 53
1.7	A recurrent scheme for the diffusion approximation when the limit
	process is a geometric Ornstein-Uhlenbeck process — 58
1.7.1	Geometric Ornstein-Uhlenbeck process and construction of discrete
	scheme — 60
1.7.2	Pre-limit and limit Ornstein-Uhlenbeck markets are arbitrage-free and complete —— 62
1.7.3	Convergence of the asset prices in the geometric Ornstein-Uhlenbeck
	model —— 65
1.8	Functional limit theorems for additive and multiplicative schemes in the
	Cox-Ingersoll-Ross model —— 68
1.8.1	"Non-truncated" and "truncated" Cox-Ingersoll-Ross processes and
	some of their properties —— 69
1.8.2	Discrete approximation schemes for "non-truncated" and "truncated"
	Cox-Ingersoll-Ross processes — 75
1.8.3	Multiplicative scheme for the Cox-Ingersoll-Ross process —— 81
1.9	General conditions of weak convergence of discrete-time multiplicative
	schemes to asset prices with memory —— 84
1.9.1	General conditions of weak convergence —— 86
1.9.2	Fractional Brownian motion as a limit process and pre-limit coefficients
	taken from Cholesky decomposition of its covariance function —— 92
1.9.3	Possible perturbations of the coefficients in Cholesky
	decomposition —— 101
1.9.4	Riemann–Liouville fractional Brownian motion as a limit process —— 104
2	Rate of convergence of asset and option prices —— 109
2.1	The rate of convergence of option prices when the limit is a
	Black–Scholes model —— 109
2.1.1	Introduction —— 109
2.1.2	The rate of convergence in the binomial model —— 110
2.1.3	The rate of convergence of option prices in the model with uniformly
	distributed asset jump —— 120
2.1.4	The rate of convergence of option prices when a general martingale-type
	discrete-time scheme approximates the Black-Scholes model — 133
2.2	The rate of convergence of option prices on the asset following the
	geometric Ornstein-Uhlenbeck process —— 145
2.2.1	Brief discussion of the limit Ornstein-Uhlenbeck asset price
	process — 146
2.2.2	Description and properties of the pre-limit discrete-time price
	processes —— 147

2.2.3	incompleteness of the pre-timit market —— 149
2.2.4	Weak convergence of asset price, with the rate of convergence —— 151
2.2.5	The rate of convergence of objective option prices —— 153
2.2.6	From objective measure to martingale measure. The rate of convergence
	of fair option prices —— 160
2.3	Estimation of the rate of convergence of option prices by using the
	method of pseudomoments —— 166
2.3.1	Rate of convergence in the CLT for i. i. d. random variables by the method
	of pseudomoments; rate of convergence of asset prices —— 166
2.3.2	The rate of convergence of put and call option prices —— 172
2.4	Market model with stochastic Ornstein-Uhlenbeck volatility: option
	pricing and discretization —— 174
2.4.1	Diffusion model with stochastic volatility governed by the
	Ornstein-Uhlenbeck process —— 177
2.4.2	Definitions and auxiliary results —— 178
2.4.3	Absence of arbitrage in the market with stochastic volatility —— 181
2.4.4	The case of independent Wiener processes —— 183
2.4.5	Derivation of an analytic expression for the option price —— 186
2.4.6	Discrete approximation of volatility processes —— 192
2.4.7	The price of European call options —— 193
2.4.8	Numerical examples —— 196
2.4.9	Approximation precision check for the case of deterministic
	volatility —— 200
2.5	Option pricing with fractional stochastic volatility and discontinuous
	payoff function of polynomial growth —— 202
2.5.1	Payoff function: additional assumptions, auxiliary properties.
	Discussion of asset price model, absence of arbitrage, martingale
	measures, incompleteness —— 204
2.5.2	Malliavin calculus with application to option pricing —— 210
2.5.3	The rate of convergence of approximate option prices in the case when
	both the Wiener process and fractional Brownian motions are
	discretized —— 215
2.5.4	The rate of convergence of approximate option prices in the case when
	only fractional Brownian motion is discretized —— 223
2.5.5	Option price in terms of the density of the integrated stochastic
	volatility —— 231
2.5.6	Simulations —— 235
3	Limit theorems for markets with non-random time-varying
	coefficients —— 243
२ 1	Convergence of European ontion prices in the Black-Scholes model with

time-varying parameters —— 243

3.1.1	Model —— 244
3.1.2	Explicit form of call and put option prices with time-varying parameters —— 245
3.1.3	Robustness of asset and European option prices —— 250
	• • • •
3.2	Convergence of barrier option prices with time-varying parameters —— 254
3.2.1	Robustness of the barrier option price —— 255
3.2.2	The price of the barrier option as a solution to the boundary value problem. Limit pricing theorem —— 258
3.3	The rate of convergence of barrier option prices under a discretization of time —— 260
3.3.1	Description of the model. The rate of convergence of the barrier option fair price in the discrete binomial market to the corresponding price in the continuous-time market —— 260
3.3.2	Modeling —— 268
3.4	The differentiability of a barrier option price as a function of the barrier —— 270
4	Convergence of stochastic integrals in application to financial markets —— 279
4.1	Multi-dimensional financial market, self-financing strategies —— 279
4.2	Functional limit theorems for the integrals with respect to semimartingales —— 284
4.2.1	Weak convergence of integrals with respect to processes of bounded variation —— 284
4.2.2	Weak convergence of stochastic integrals with respect to martingales —— 289
4.2.3	Weak convergence of stochastic integrals with respect to semimartingales —— 292
4.2.4	Weak convergence of integrands under the condition of convergence of stochastic integrals —— 295
4.3	Application of functional limit theorems for stochastic integrals to financial investment —— 299
4.3.1	Weak convergence of capitals of self-financing strategies — 299
4.3.2	Convergence of risk minimizing strategies — 301
4.4	Limit behavior of capitals and barrier option prices in the Black–Scholes model with stochastic drift and volatility —— 307
4.4.1	Description of the model —— 308
4.4.2	Weak convergence of capitals in the generalized Black–Scholes model —— 308
4.4.3	Weak convergence of European barrier option prices in the generalized Black–Scholes model —— 312

Α	Essentials of calculus, probability, and stochastic processes — 319
A.1	Essentials of calculus —— 319
A.1.1	Some inequalities for exponential functions —— 319
A.2	Essentials of probability —— 320
A.2.1	Conditional expectation and its properties —— 320
A.2.2	Equivalent probability measures —— 321
A.3	Essentials of stochastic processes —— 321
A.3.1	Martingales, local martingales, and semimartingales —— 323
A.3.2	Wiener process —— 331
A.3.3	Fractional Brownian motion —— 332
A.3.4	Essentials of stochastic calculus —— 333
A.3.5	Elements of Malliavin calculus —— 337
A.3.6	Convergence of stochastic elements —— 339
A.3.7	Weak convergence to Wiener process with a drift — 347
A.3.8	Central limit theorems in the scheme of series —— 347
A.3.9	The rate of convergence in the central limit theorem — 348
A.3.10	The rate of convergence to the normal law in terms of pseudomoments —— 350
A.3.11	Stochastic differential equations and the approximations of solutions —— 358
A.4	Some algebra related to matrices in the Cholesky decomposition —— 362

Bibliography --- 363

Index --- 371