Contents

Preface xvii

Part I Inspiration 1

1	The Next Big Developments – The Lab of the Future 3
	Richard Shute and Nick Lynch
1.1	Introduction 3
1.2	Discussion 3
1.2.1	People/Culture 4
1.2.2	Process 5
1.2.3	Lab Environment and Design 6
1.2.4	Data Management and the "Real Asset" 7
1.2.4.1	Data in the Hypothesis-driven, Research Lab 7
1.2.4.2	Data in the Protocol-driven Lab 8
1.2.4.3	New Data Management Developments 9
1.2.5	New Technology 11
1.2.5.1	Lab Automation Integration and Interoperability 12
1.2.5.2	Quantum Computing and the Lab of the Future 16
1.2.5.3	Impact of AI and ML 18
1.2.6	New Science 19
1.2.6.1	New Science in Health Care 19
1.2.6.2	New Science in the Life Sciences Domain 20
1.2.6.3	Other Important New Science Areas 21
1.3	Thoughts on LotF Implementation 22
1.4	Conclusion 22
	References 24

Part II Knowledge Base 33

2	Crucial Software-related Terms to Understand 35
	Luka Murn
2.1	Digital Revolution 35
2.2	Computers 35
2.2.1	Programs, Instructions, and Programming Languages 37
2.2.2	Hardware and Software 38
2.2.3	Operating Systems 38
2.2.4	Abstraction 40
2.2.5	Virtualization 40
2.3	Internet 41
2.3.1	World Wide Web (WWW) 42
2.3.2	Web Applications 43
2.3.3	Web Applications in Comparison With Traditional Applications 44
2.4	Cloud Computing 47
2.4.1	Classification of Cloud Services 48
2.4.1.1	IaaS (infrastructure as a service) 49
2.4.1.2	PaaS (platform as a service) 49
2.4.1.3	SaaS (software as a service) 49
2.4.2	Cloud Deployment Models 50
2.4.2.1	Public Cloud 50
2.4.2.2	Private Cloud 51
2.4.2.3	Hybrid Cloud 51
2.4.3	Issues and Considerations 51
2.5	Computer Platforms 52
2.5.1	Desktop/Laptop/PC 53
2.5.1.1	Desktop Applications 53
2.5.2	Mobile 54
2.5.2.1	Mobile Applications 55
2.5.3	Server/Web 55
2.5.3.1	Web Browser 56
2.5.4	Embedded 56
2.5.5	Cross-platform 56
2.6	Applications 57
2.7	Values of Software 58
2.7.1	Features 58
2.7.2	Design 58
2.8	Software Development 58
2.9	Software Product Lifecycle 59
2.10	Software Design 61
2.10.1	Code 61
2.10.2	Data 63
2.11	Software Quality 64
2.12	Software Integration 65

2.12.1	API 66				
2.12.2	Middleware 67				
2.12.3	Authentication and Authorization 67				
2.12.4	Internet of Things 67				
2.13	Data-flow Modeling for Laboratories 67				
2.14	Software Licensing 70				
2.14.1	Proprietary Software Licenses 70				
2.14.2	Open Source 70				
	References 72				
3	Introduction to Laboratory Software Solutions and Differences				
	Between Them 75				
	Tilen Kranjc				
3.1	Introduction 75				
3.2	Types of Software Used in Laboratories 76				
3.2.1	Electronic Lab Notebook (ELN) 76				
3.2.2	Laboratory Information Management System (LIMS) 78				
3.2.3	Laboratory Execution System (LES) 80				
3.2.4	Laboratory Data Management System (LDMS) 80				
3.2.5	Chromatography Data Management System (CDMS) 80				
3.2.6	Process Analytical Technology (PAT) Software 81				
3.2.7	Automation Scheduling Software 82				
3.2.8	Laboratory Instrument Software 82				
3.2.9	Middleware and Robotic Process Automation (RPA) 83				
3.2.10	Data Analysis Software 83				
3.2.11	Enterprise Resource Planning (ERP) 84				
	References 84				
4	Data Safety and Cybersecurity 85				
	Luka Murn				
4.1	Introduction 85				
4.1.1	Magnetic Storage 85				
4.1.2	Solid-state Drives 86				
4.2	Data Safety 86				
4.2.1	Risks 86				
4.2.2	Measures 87				
4.2.2.1	Backups 87				
4.2.2.2	Data Replication 88				
4.3	Cybersecurity 88				
4.3.1	Threat Model 89				
4.3.1.1	Untargeted/Opportunistic Attacks 89				
4.3.1.2	Targeted Attacks 90				
4.3.2	Risks 90				
4.3.2.1	Physical Access 91				
4.3.2.2	Software Access 91				

viii	Contents					
	4.3.2.3	Privileged Users 93				
	4.3.2.4	Data in Transit 93				
	4.3.2.5	Social Engineering 94				
	4.3.3	Measures 96				
	4.3.3.1	Physical Protection 96				
	4.3.3.2	Software and Infrastructural Measures 96				
	4.3.3.3	Encryption 97				
	4.3.3.4	Policies and Processes 99				
	4.3.3.5	Education 99				
	4.3.3.6	Third-party Security Review 100				
		References 100				
	5	FAIR Principles and Why They Matter 101				
		Keith Russell				
	5.1	Introduction 101				
	5.2	What Is the Value of Making Data FAIR? 101				
	5.3	Considerations in Creating Lab-based Data to Prepare for It to Be				
		FAIR 102				
	5.4	The FAIR Guiding Principles Overview 104				
		References 104				
6 1		The Art of Writing and Sharing Methods in the Digital				
		Environment 107				
		Lenny Teytelman and Emma Ganley				
	6.1	Introduction 107				
	6.2	Tools and Resources for Tracking, Developing, Sharing, and				
		Disseminating Protocols 109				
	6.2.1	Tools for Organizing and Tracking Your Protocols 109				
	6.3	Making Your Protocols Public 110				
	6.4	The Art of Writing Methods 111				
		References 113				
		Part III Practical 115				
	7	How to Approach the Digital Transformation 117				
		Jana Erjavec, Matjaž Hren, and Tilen Kranjc				
	7.1	Introduction 117				
	7.2	Defining the Requirements for Your Lab 118				
	7.2.1	Digitization Versus Digitalization Versus Digital Transformation 118				
	7.2.2	Defining the Approach and Scope for Your Lab – Digitization,				
		Digitalization, or Digital Transformation? 119				
	7.2.2.1	Which Challenges Do I Have Now? 120				
	7.2.2.2	Which Challenges Need My Immediate Attention? 121				
	7.2.2.3	Which Challenges Do I See in the Future? 121				

7.2.2.4	What is My Long-term Business Strategy? 122
7.2.2.5	How Will Changes Affect My Current Business? 122
7.2.2.6	How Will I Manage Legacy Data? 123
7.2.2.7	How Will I Get People to Cooperate? 124
7.3	Evaluating the Current State in the Lab 124
7.3.1	Defining the Overall Goals of the Digitalized Laboratory 124
7.3.1.1	Example 124
7.3.2	Defining the Data Flows 125
7.3.3	Describing the Processes 127
7.3.4	Identifying the Bottlenecks 128
7.3.4.1	Bottlenecks in Data Flow Optimization 128
7.3.4.2	Efficiency and Integrity of Data Flows 128
7.3.4.3	Example: Make Data Machine Readable 129
7.3.5	Opportunities in Process Optimization 130
7.3.5.1	Time-consuming Processes 130
7.3.5.2	General Laboratory Processes 131
7.3.6	Gap Analysis 131
7.3.6.1	Example 132
	References 133
8	Understanding Standards, Regulations, and Guidelines 135
	Matjaž Hren
8.1	Introduction 135
8.2	The Need for Standards and Guidelines 136
8.3	How Does Digitalization Relate to Standards and Guidelines 137
8.3.1	Standards Should Affect the Selection of the Tools for Digitalization 137
8.3.2	Digital Tools Promote Good Practices 138
8.4	Challenges Related to Digitalization in Certified Laboratories 140
8.5	Can Digital Strategy be Implemented without Certification? 141
	References 142
9	Interoperability Standards 143
	Sören Hohmann
9.1	SiLA 144
9.2	AnIML 145
9.3	Allotrope 146
9.4	Conclusion 147
10	Addressing the User Adoption Challenge 149
	Jana Erjavec
10.1	Introduction 149
10.2	Identify Key Stakeholders and Explain the Reasons for Change 151
10.3	Establish a Steering Committee 152
10.4	Define the Project Objectives, Expected Behaviour, and Timeline 153
10.5	Check for Understanding and Encourage Debate 154

×	Contents			
	10.6 Acknowledge Ideas and Communicate Progress 155			
	10.7	Provide a Feedback Mechanism 155		
	10.8	Set Up Key Experience Indicators and Monitor Progress 156		
	10.8.1	Happiness 156		
	10.8.2	Engagement 157		
	10.8.3	Adoption 157		
	10.9	Gradually Expand to a Larger Scale 158		
	10.10	Conclusions 159		
		References 160		
	Testing the Electronic Lab Notebook and Setting Up a Product Trial 161			
	111	Blazka Orel		
	11.1	Introduction 161		
	11.2	The Product Trial 161		
	11.3 11.4	The Importance of a Product Trial 162		
	11.4.1	Setting Up a Product Trial 163 Phase I: Planning 163		
	11.4.1	Phase II: Conceptualization 164		
	11.4.3	Phase III: Testing 166		
	11.4.4	Phase IV: Reporting 170		
	11.5	Good Practices of Testing a Product 171		
	11.5.1	Taking the Time for Planning 172		
	11.5.2	Having a Bigger Picture in Mind 172		
	11.5.3	Keeping Your Testers Motivated 173		
	11.5.4	Systematic Evaluation of Products 173		
	11.5.5	Cooperating with Vendors 174		
	11.6	Conclusions 174		
		References 175		
		Part IV Case Studies 177		
	12	Understanding and Defining the Academic Chemical		
		Laboratory's Requirements: Approach and Scope of		
		Digitalization Needed 179		
		Samantha Kanza		
	12.1	Types of Chemistry Laboratory 179		
	12.2	Different Stages of Digitalization 179		
	12.3	Preparatory Stage 180		
	12.3.1	Digitalization Requirements 181		
	12.3.2	Issues and Barriers to Adoption 181		
	12.3.3	Suggested Solutions 181		
	12.4	Laboratory Stage 182		
	12.4.1	Digitalization Requirements 182		

12.4.2	Issues and Barriers to Adoption 183
12.4.3	Suggested Solutions 184
12.5	Transferal Stage 185
12.5.1	Digitalization Requirements 185
12.5.2	Issues and Barriers to Adoption 185
12.5.3	Suggested Solutions 186
12.6	Write-up Stage 186
12.6.1	Digitalization Requirements 186
12.6.2	Issues and Barriers to Adoption 187
12.6.3	Suggested Solutions 187
12.7	Conclusions and Final Considerations 188
	References 189
13	Guidelines for Chemistry Labs Looking to Go Digital 191
	Samantha Kanza
13.1	Understanding the Current Setup 191
13.2	Understanding Your Scientists and Their Needs 192
13.3	Understanding User-based Technology Adoption 193
13.4	Breaking Down the Barriers Between Science and Technology 195
13.5	Making Your Laboratory Team Understand Why This Is Necessary 195
13.6	Working with Domain Experts 195
13.7	Choosing the Right Software 196
13.8	Changing Attitude and Organization 196
	References 197
14	Electronic Lab Notebook Implementation in a Diagnostics
	Company 199
	Casey Scott-Weathers
14.1	Making the Decision 199
14.2	Problems with Paper Notebooks 199
14.3	Determining Laboratory's Needs 200
14.4	Testing 201
14.5	A Decision 201
14.6	How to Structure the ELN 202
14.7	Conclusion 203
15	Identifying and Overcoming Digitalization Challenges in a
	Fast-growing Research Laboratory 205
	Dorothea Höpfner
15.1	Why Going Digital? 205
15.2	Steps to Introduce ELNs in Lab Practice 207
15.2.1	Step 1: Getting to Know the Market or What We Can Expect of an
	ELN 207
15.2.2	Step 2: Defining the Needs of Our Lab and Our Requirements for an
	ELN 208

xii Contents	
--------------	--

15.2.2.1	Data Structure 209			
15.2.2.2	Compatibility with Databases 209			
15.2.2.3	Flexibility of Documentation Style 209			
15.2.2.4				
15.2.2.5	Speed 210			
15.2.3	Step 3: Matching Steps 1 and 2 and Testing Our Best Options 210			
15.2.4	Step 4: Getting Started in Implementing the ELN 211			
15.3	Creating the Mindset of a Digital Scientist 213			
15.4	The Dilemma of Digitalization in Academia 214			
	-			
16	Turning Paper Habits into Digital Proficiency 217			
	Tessa Grabinski			
16.1	Five Main Reasons for the Implementation of a Digital System to			
	Manage the Research Data 217			
16.1.1	Scale-up of the Laboratory 218			
16.1.2	Protocol Management Issues 218			
16.1.3	Environmental and Financial Factors 218			
16.1.4	Introducing the Benefits of Technology to Younger Employees 219			
16.1.5	Remote Access to Data by Authorized Supervisors 219			
16.2	The Six-step Process of Going from Paper to Digital 219			
16.2.1	Defining the Specific Needs of the Laboratory 219			
16.2.2	Testing the Software and Defining the Standard Way to Use It 220			
16.2.3	Organizing the Collaboration Between Lab Members and Supervisors 221			
16.2.4	Managing Projects and Setting Up Work Processes 222			
16.2.5	Versioning of Protocols and Keeping the Protocol Repository Up to			
10.2.5	Date 225			
16.2.6	Choosing to Digitize Only New Projects 226			
16.3	Onboarding All Team Members and Enhancing the Adoption of the New			
	Technology in the Lab 226			
16.4	Benefits of Switching from Paper to Digital 230			
17	Going from Paper to Digital: Stepwise Approach by the			
	National Institute of Chemistry (Contract Research) 231			
	Samo Andrensek and Simona L. Hartl			
17.1	Presentation of our CVTA Laboratory 231			
17.2	Data Management Requirements Explained in Detail 231			
17.2.1	Meaning of ALCOA 232			
17.2.2	FDA and CFR 21 Part 11 233			
17.2.3	MHRA and GxP Data Integrity Guidance and Definitions 233			
17.2.4	Definition of Terms and Interpretation of Requirements 235			
17.3	Going from Paper to Digital 240			
17.4	Implementation of SciNote (ELN) to CVTA System 241			
17.4.1	Some of CVTA user's Requirements (URS) 242			

17.4.2	From Documentation Review and Approval to ELN			
	Implementation 242			
17.4.3	Step-by-Step Implementation of Change Control Management in			
17.4.3.1	SciNote 244 Creating Projects in SciNote 245			
17.4.3.1	Creating a Workflow 245			
17.4.3.3	Creating the Tasks and Protocol Steps 245			
17.4.3.4	Filtering, Overview of Data and Inventory for Change Control Management 246			
17.4.3.5	Audit Trail of Changes 246			
17.4.3.6	Overview of all Activities 246			
17.4.3.0	Organization and Signing of CVTA Documentation in ELN SciNote Due			
17.4.4	to User Roles and Permissions 250			
17.4.4.1	Managing the Team Roles and Responsibilities within SciNote 250			
17.4.4.2	Managing Projects for Efficient Work with Clients 250			
17.5	Suggestions for Improvements and Vision for the Future 251			
	References 251			
18	Wet Lab Goes Virtual: In Silico Tools, ELNs, and Big Data Help			
10	Scientists Generate and Analyze Wet-lab Data 253			
	Jungjoon Lee and Yoonjoo Choi			
18.1	CRISPR-Cas9 Explained 254			
18.2	Introduction of the Digital Solutions and ELN into the Laboratory 255			
18.3	The Role of the ELN and In Silico Tools in the Genome-editing Process 255			
18.3.1	Designing sgRNA 255			
18.3.2	Issues with Paper-based Processes and the Use of ELN 256			
18.3.3	High-content Imaging for the Target Discovery 256			
18.3.4	Plant Virtual Laboratory 257			
18.4	The Role of the ELN and In Silico Tools in the Protein Design			
10.4	Process 258			
18.4.1	Protein Modeling 258			
18.4.2	Protein Redesign 259			
18.4.3	Importance of Keeping the Electronic Records 260			
18.4.4	Development of Therapeutic Antibodies 260			
18.4.5	Importance of Electronic Lab Notebook for Communication Between			
	Team Members 262			
	References 263			
19	Digital Lab Strategy: Enterprise Approach 265			
	Cesar Tavares			
19.1	Motivation 265			
19.1.1	Which Problem Do We Want to Solve? 265			
19.1.2	New Problems Require New Answers 266			
19.2	Designing a Flexible and Adaptable Architecture 267			

xiv	Contents	
	19.3	There is Only One Rule: No Rules 269
	19.4	The Lab Digitalization Program Compass 270
	19.5	Conclusion 273
		References 273
		Part V Continuous Improvement 275
	20	Next Steps - Continuity After Going Digital 277 Klemen Zupancic
	20.1	Are You Ready to Upgrade Further? 277
	20.2	Understanding the Big Picture 277
	20.3	What to Integrate First? 279
	20.3.1	Integrations 280
	20.3.2	Laboratory Equipment – Concepts of IoT and Lab 4.0 281
	20.3.2.1	Does the Equipment Support Integrations? 281
	20.3.2.2	How Often Is the Instrument Being Used? 282
	20.3.2.3	Is There a High Chance for Human Error? 282
	20.3.2.4	Do You Need One- or Two-way Sync? 282
	20.3.2.5	Is the Equipment Using Any Standards? 282
	20.3.2.6	Is Equipment Cloud Connected? 282
	20.3.3	Data Repositories 282
	20.3.4	Data Analytics Tools 283
	20.3.5	Other Types of Integrations 284
	20.3.5.1	Scientific Search Engines and Literature Management 284
		Data Sharing 284
	20.3.5.3	Publishing 285
	20.3.5.4	Upgrading Plans 285
	20.4	Budgeting 285
	20.5	Continuous Improvement as a Value 286
		References 286
		Part VI Vision of the Future and Changing the Way We Do
		Science 287
	21	Artificial Intelligence (AI) Transforming Laboratories 289 Dunja Mladenic
	21.1	Introduction to AI 289
	21.1.1	Opportunities 289
	21.1.2	Needs 290
	21.1.3	Challenges 290
	21.2	Artificial Intelligence in Laboratories 291
	21.2.1	Data Preprocessing 291
	21.2.2	Data Analytics 292

21.3	Process Monitoring 293
21.4	Discussion – Human in the Loop 294
	References 295
22	Academic's Perspective on the Vision About the Technology
	Trends in the Next 5-10 Years 297
	Samantha Kanza
22.1	Hybrid Solutions 297
22.2	Voice Technologies 298
22.3	Smart Assistants 298
22.4	Internet of Things 298
22.5	Robot Scientists 299
22.6	Making Science Smart - Incorporating Semantics and AI into Scientific
	Software 300
22.7	Conclusions 300
	References 301
23	Looking to the Future: Academic Freedom Versus Innovation
	in Academic Research Institutions 303
	Alastair Downie
23.1	Introduction 303
23.2	Corporate Culture Versus Academic Freedom 303
23.3	Spoiled for Choice, but Still Waiting for the Perfect Solution 304
23.4	Building a Single, Shared Infrastructure for Research Data
	Management 305
23.5	A Journey of a Thousand Miles Begins with a Single Step 307
	Reference 308
24	Future of Scientific Findings: Communication and
	Collaboration in the Years to Come 309
	Lenny Teytelman and Emma Ganley
24.1	Preprints: Reversing the Increased Time to Publish 309
24.2	Virtual Communities 310
24.3	Evolving Publishing Models 312
24.4	Funders Are Starting to Play a Role in Facilitating and Encouraging
	Rapid Sharing and Collaboration 312
24.5	Conclusion 314
	References 314
25	Entrepreneur's Perspective on Laboratories in 10 Years 317
	Tilen Kranjc
25.1	Data Recording 317
25.2	Recognition of Voice and Writing 318
25.3	Data Recording in the Future 318
25.4	Experimental Processes 318

i	
25.5	Research Project Management 319
25.6	Experimental Planning 319
25.7	Virtual Reality 320
25.8	Smart Furniture 320
25.9	Experiment Execution 321
25.10	Laboratory Automation Trends 321
25.11	Cloud Laboratories 322
25.12	Data Analysis Trends 323
25.13	Artificial Intelligence 324
25.14	Data Visualizations and Interpretation 325
25.15	Databases 325
25.16	Conclusion 326
	References 326

Index 329

xvi | Contents