Contents

List of Contributors xiii

Preface xvii

General Introduction xix

Part I Recent Progress on Spectroscopic Techniques 1

1	Polymer Spectroscopy - Spectroscopy from the Fai-Ottraviolet
	to Far-Infrared/Terahertz and Raman Spectroscopy 3
	Yukihiro Ozaki and Harumi Sato
1.1	Introduction to Polymer Spectroscopy 3
1.1.1	Outline of Polymer Spectroscopy 3
1.1.2	Brief History of Polymer Spectroscopy 5
1.2	Overview of Molecular Spectroscopy from the Far-Ultraviolet to
	Far-Infrared/Terahertz and Raman Spectroscopy in Polymer
	Research 6
1.2.1	IR and Raman Spectroscopy Analyses 6
1.2.2	FIR/Terahertz and Low-Frequency Raman Spectroscopy 8
1.2.3	Near-Infrared (NIR) Spectroscopy 8
1.2.4	SERS and TERS Spectroscopy 9
1.2.5	FUV Spectroscopy 9
1.3	Specific Examples of Molecular Spectroscopy Studies of Polymers 10
1.3.1	Infrared, Raman, and NIR Spectroscopic Evidence for the Coexistence of
	Hydrogen Bond Types in Poly(Acrylic Acid) 10
1.3.2	Low-Frequency Vibrational Modes of Nylon-6 Studied by Using IR and
	Raman Spectroscopies and Density Functional Theory Calculations 16
1.3.3	NIR Spectra of Linear Low-Density Polyethylene and Their
	Chemometrics Analysis 21
1.3.4	Study of the Crystallization Behavior of Asymmetric PLLA/PDLA Blend
	by IR and Raman Spectroscopy and Raman Imaging 23
1.3.5	3D SERS Imaging Using Chemically Synthesized Highly Symmetric
	Nanoporous Silver Microparticles 28

Contents	
1.3.6	Tip-Enhanced Raman Scattering Spectroscopy Study of Local Interactions at the Interface of Styrene–Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites 34
1.4	Perspectives for Polymer Spectroscopy 39 References 41
2	FTIR Spectroscopy and Spectroscopic Imaging for the Analysis
	of Polymers and Multicomponent Polymer Systems 45
	Huiqiang Lu, Andrew V. Ewing, and Sergei G. Kazarian
2.1	Investigation of Polymers Using FTIR Spectroscopy and Spectroscopic
	Imaging 45
2.1.1	Investigation of Miscibility in Polymer Blends 46
2.1.2	Investigation of Intermolecular Interactions 47
2.1.2.1	Investigation of Partially Miscible PMMA-PEG Blends Using
	Two-Dimensional Disrelation Mapping 48
2.1.3	Investigation of Crystallization in Polymers 51
2.1.3.1	Investigation of Solvent-Induced Crystallization in Polymers 51
2.1.3.2	Investigation of the Crystallization Process of PHB, PLLA, and Their
	Blends 53
2.2	Investigation of Polymers Subjected to High-Pressure or Supercritical
	CO ₂ Using FTIR Spectroscopy and FTIR Spectroscopic Imaging 55
2.2.1	Morphology of Polymeric Materials Under High-Pressure or
	Supercritical CO ₂ 56
2.2.2	Investigation of Interaction in Polymers Under High-Pressure or
	Supercritical CO ₂ 59
2.2.2.1	Investigation of the Effect of High-Pressure CO ₂ on the H-Bonding in
	PEG-PVP Blends 60
2.2.2.2	Investigation of the Mechanism of Interaction Between CO ₂ and
	Polymers Through the Thermodynamic Parameters Produced from In
222	Situ ATR-FTIR Spectroscopy 61
2.2.3	Investigation of Crystallization in Polymers Under High-Pressure or Supercritical CO ₂ 61
2.2.4	The Investigation of Structural Changes and Crystallization Kinetics of
2.2.4	Polymers Exposed to High-Pressure CO ₂ Through In Situ High-Pressure
	FTIR and FT-Raman Spectroscopy 64
2.2.5	Investigation of Swelling and CO ₂ Sorption into the Polymers Under
2.2.3	High-Pressure or Supercritical CO ₂ 65
2.3	Conclusion 67
2,3	References 68
	References 00
3	Interfaces in Polymer Nanocomposites Characterized by
-	Spectroscopic Techniques 75
	Liliane Bokobza
3.1	Introduction 75
3.2	Types of Interactions at the Interface 76

3.3	Characterization of the Interfaces 80
3.3.1	Fluorescence Spectroscopy 82
3.3.2	Solid-State NMR Spectroscopy 85
3.3.3	Vibrational Spectroscopy 88
3.3.3.1	Infrared Spectroscopy 89
3.3.3.2	Raman Spectroscopy 91
3.4	Conclusions 95
	References 96
4	Far-Infrared/Terahertz and Low-Frequency Raman
7	Spectroscopies in Polymers 107
	Harumi Sato
4.1	Introduction 107
4.2	Intermolecular Hydrogen Bonds in the Low-Frequency Region of PHB
	by QCCs 108
4.3	Several Types of Intermolecular Hydrogen Bonds in PCL 109
4.4	Stress-Induced Crystal Transition of Polybutylene Succinate (PBS) 113
4.5	The Differences in Intermolecular Hydrogen Bonding Between PET and
	PBT 115
4.6	THz Imaging of Polymer Film 117
4.7	Conclusions 120
	References 120
5	Near-Infrared Spectroscopy and Imaging of Polymers 125
	Daitaro Ishikawa, Yuta Hikima, and Yukihiro Ozaki
5.1	Introduction to NIR Spectroscopy 125
5.1.1	Principles of NIR Spectroscopy 125
5.1.2	Characteristics and Advantages of NIR Spectroscopy 126
5.1.3	Analysis of NIR Spectra 126
5.2	Applications to Polymer Science and Engineering of NIR
	Spectroscopy 128
5.2.1	Polarized NIR Spectroscopy Studies of Molecular Orientation of
	Polymers 128
5.2.2	Isothermal Crystallization Kinetics of Poly(3-hydroxybutyrate) 134
5.2.3	Crystallization of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
	During Melt Extrusion Promoted by Residual Crystals 140
5.2.3.1	Outline of Online NIR Analysis and Online NIR Monitoring of the
	Residual Crystal Amount at the Extruder Outlet Nozzle 140
5.2.3.2	Amount of Residual Crystals at the Extruder Outlet 141
5.2.3.3	Crystallization of Extruded Strands 145
5.2.3.4	Analysis of Extruded Strand Crystallization Using the Avrami Equation 146
5.3	NIR Imaging for Polymer Sciences 148
5.3.1	Introduction 148
5.3.2	Theory of NIR Imaging 148

viii	Contents	
	5.3.2.1	Acquisition of Hypercube 148
	5.3.2.2	Data Transfer and Mapping 149
	5.3.2.3	Feature of NIR Imaging Devices 150
	5.3.3	Applications of NIR Imaging 151
	5.3.3.1	Monitoring of Crystal Evolution Combined with Chemometrics 151
	5.3.3.2	Quality Evaluation Potential for Wide Area 153
	5.3.3.3	Diffusion Process Monitoring 153
	5.3.3.4	Degradable Process Monitoring of Biodegradable Polymer 154
	5.3.3.5	Rapid Evaluation of the Water Content in PLA Pellets 156
	5.3.3.6	Nondestructive Detection of Degraded Polylactic Acid Moldings 157
		References 160
	6	Far Ultraviolet Spectroscopy for Polymers 165 Yusuke Morisawa and Nami Ueno
	6.1	Introduction 165
	6.2	Measurement of ATR-FUV Spectra of Polymer 166
	6.3	ATR-FUV Spectra of Nylons 167
	6.4	ATR-FUV Spectra of Poly(3-hydroxybutyrate) (PHB) and Its Graphene
		Nanocomposites 172
	6.5	ATR-FUV Study of Poly(ethylene glycol) (PEG) and Its Complex with
		Lithium Ion (Li ⁺) 176
	6.6	Summary 181
		References 181
	7	Synchrotron-Based UV Resonance Raman Spectroscopy for
		Polymer Characterization 183
		Barbara Rossi, Mariagrazia Tortora, Sara Catalini, Alessandro Gessini, and
		Claudio Masciovecchio
	7.1	Basic Principles of Raman and UV Resonance Raman Spectroscopy 183
	7.1.1	Molecular Vibrations and Raman Effect 183
	7.1.2	Resonance Raman (RR) Scattering 191
	7.1.3	Fundamental Applications of UV Resonance Raman Spectroscopy 193
	7.2	Synchrotron-Based UV Resonance Raman: Basic Principles and
	721	Instrumentation 193 Synchrotron-Based UVRR Setup on IUVS@Elettra 194
	7.2.1 7.3	Synchrotron-Based UVRR Setup on IUVS@Elettra 194 SR-UVRR Characterization of Biopolymers 197
	7.3 7.4	UV Resonance Raman Studies on Polymeric Hydrogels 203
	7.4.1	Water Confinement in Polysaccharide Hydrogels 204
	7.4.2	Phase Transition in Thermo-Sensitive Polysaccharide Hydrogels 208
	7.4.3	Water and Polymer Dynamics in pH-Responsive Polysaccharide
		Hydrogels 212
	7.5	Conclusions 215
	· -=	Acknowledgment 217
		References 217

8	Sum Frequency Generation Spectroscopy for Understanding
	the Polymer Dynamics at Buried Interfaces 227
	Daisuke Kawaguchi and Keiji Tanaka
8.1	Introduction 227
8.2	Principle 228
8.3	Examples 230
8.3.1	Nonsolvent Interface 230
8.3.1.1	Polystyrene 230
8.3.2	Solid Interface 238
8.3.2.1	Polystyrene 238
8.3.2.2	Polyisoprene 240
8.3.2.3	Poly(styrene-co-butadiene) Rubber [89] 244
8.4	Conclusions 250
	Acknowledgements 251
	References 251
9	Application of Two-Dimensional Correlation Spectroscopy
	(2D-COS) in Polymer Studies 259
	Yeonju Park, Isao Noda, and Young Mee Jung
9.1	Introduction 259
9.2	Theory 260
9.2.1	Background 260
9.2.2	Properties of 2D-COS 260
9.3	Applications of 2D-COS in Polymer Studies 261
9.3.1	Applications of Conventional 2D-COS 261
9.3.1.1	Biodegradable Polymers 261
9.3.1.2	Thermo-Responsive Polymers 262
9.3.2	2D Hetero-Spectral Correlation Analysis 267
9.3.3	Two-Dimensional (2D) Gradient-Mapping Method 269
9.3.4	Chemometric Techniques Combined with 2D-COS 270
9.3.5	Smooth Factor Analysis 272
9.3.6	Projection 2D-COS 275
9.3.7	2D-COS for Hyperspectral Imaging 278
9.4	Conclusions 284
···	References 284
10	Molecular Dynamics in Polymer Science 297
	Mateusz Z. Brela, Marek Boczar, and Marek J. Wójcik
10.1	Introduction 297
10.2	Historical and Theoretical Background 299
10.3	Applications 302
10.3.1	Vibrational Spectra of Hydrogen-Bonded Polymers 303
10.3.1	Studies of Interactions Between Polymers and Water 304
10.3.2	Mechanical Properties of Polymers 306
10.3.4	Interphase Interactions 307
10.5.4	murphase meracuons 30/

x	Contents	
	10.4	Summary and Perspectives 309 Acknowledgment 311
		References 311
	11	Spectroscopic Analysis of Structural Transformations Associated with Poly(lactic acid) 317 Shaw L. Hsu and Xiaozhen Yang
	11.1	Introduction 317
	11.2	Spectroscopic Tools 319
	11.2.1	Vibrational Features of PLA Crystals 321
	11.2.2	Analysis of Disordered PLA Chains 323
	11.2.3	Description of Anisotropic PLA – Polarized Spectra 327
	11.3	Simulation Studies for Both Ordered and Disordered Structures 329
	11.4	Analysis of Conformational Changes in PLA During Deformation 334
	11.5	Aging Behavior in PLA 338
	11.6	Conclusion 340
		Acknowledgment 340
		References 340
		Part II Topical Polymers Studied by Spectroscopy 345
	12	Probing Molecular Events in Self-Healable Polymers 347
		Qianhui Liu, Lei Li, and Marek W. Urban
	12.1	Introduction 347
	12.2	Microphase Separation 349
	12.3	Entropically Driven Self-Healing 353
	12.3.1	Free Radical and Cationic Recombination 355
	12.3.2	Van der Waals Interactions 360
	12.3.3	Chemical Sensing of Damage–Repair Cycle 361
		Acknowledgments 365
		References 365
	13	Recent Application of Vibrational Spectroscopy to Conjugated
		Conducting Polymers 367
		Yukio Furukawa
	13.1	Introduction 367
	13.2	Carriers 369
	13.3	Optical Absorption Spectra Upon Chemical Doping 371
	13.3.1	P3HT <i>371</i>
	13.3.2	Poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT-C16) 372
	13.4	Raman Spectra of Positive Polarons and Bipolarons Generated Upon Chemical Doping 374

13.4.1	P3HT 374
13.4.2	PBTTT-C16 375
13.5	Carriers and Electrical Properties Based on ILGTs 377
13.5.1	ILGTs 377
13.5.2	Raman Spectra of ILGTs Fabricated with P3HT 378
13.5.3	Raman Spectra of ILGTs Fabricated with PBTTT-C16 380
13.6	Carrier Mobilities 383
13.7	Raman Images in the Channel Region 383
13.8	Carrier Dynamics in Bulk Heterojunction Films 386
13.8.1	Photoexcitation Dynamics on Femto- and Picosecond Time Scales 386
13.8.2	Microsecond Recombination Dynamics of Long-Lived Carriers 387
13.9	Conclusions 388
	References 388
14	Vibrational Spectroscopy for Fluoropolymers and
	Oligomers 393
	Takeshi Hasegawa
14.1	Perfluoroalkyl-Containing Compounds 393
14.1.1	Molecular Conformation on Phase Diagram 393
14.1.2	Molecular Vibration of an R _f Group 396
14.1.3	The SDA theory 400
14.2	Spectroscopy for R _f Compounds 402
14.2.1	ROA analysis of R _f Compounds 402
14.2.2	Surface Modes of Phonon and Polariton 405
14.2.3	Summary and Perspective 408
	References 409
15	Probing Structures of Conductive Polymers with Vibrational
	Spectroscopy 413
	Jianming Zhang and Yuan Yuan
15.1	Introduction 413
15.2	Application of Vibrational Spectroscopy 413
15.2.1	Chain Packing/Aggregate Mode Identification 413
15.2.2	Conformation-Sensitive Bands Identification 414
15.2.3	Doping-Sensitive Bands Identification 415
15.2.4	Thermally Induced Phase Transitions 417
15.2.5	Structural Dynamics 418
15.2.6	Chemical Composition/Morphology Analysis in
	Conductive-Polymer-Based Blends 420
15.2.7	Surface/Interface Molecular Orientation 423
15.2.8	Structure and Dynamics of Charge Carriers 425
15.2.9	Electric-Field-Induced Structural Changes 429
15.3	Conclusion 431
	References 431

Weak Hydrogen Bonding in Biodegradable Polymers 435
Harumi Sato
Introduction 435
Weak Hydrogen Bonding in Poly(3-hydroxybutyrate) 436
Comparison Between Weak and Strong Hydrogen Bonds 438
Difference in the Side Chain Length; PHB and PHV 439
Polyhydroxyalkanoate Copolymers 442
Crystallization Process of PHB 443
Other Kinds of CH···O Hydrogen Bonding 443
Conclusions 447
References 449

Index 453