Contents

Preface — VII

A	C	kn	0	W	led	lg	m	en	ts		I)	(
---	---	----	---	---	-----	----	---	----	----	--	----	---

1	Topics of this book —— 1
1.1	Topic 1: Derivation of Carleman estimates and stability estimates for some ill-posed Cauchy problems, Chapter 2 —— 1
1.2	Topic 2: Global uniqueness theorems for multidimensional CIPs on the
	basis of the BK method, Chapter 3 —— 1
1.3	Topic 3: Carleman estimates for numerical methods for ill-posed Cauch
	problems for PDEs, Chapters 4, 5, and 12 —— 3
1.4	Topic 4: The convexification globally convergent numerical concept for
	CIPs: A far reaching consequence of the BK method, Chapters 6–11—
2	Carleman estimates and Hölder stability for ill-posed Cauchy
	problems 7
2.1	What is the Carleman estimate —— 8
2.2	Hölder stability for ill-posed Cauchy problems —— 9
2.3	Carleman estimate for the parabolic operator —— 13
2.4	Carleman estimate for the elliptic operator —— 20
2.5	Carleman estimate for a hyperbolic operator —— 22
2.6	Specifying Hölder stability estimates for ill-posed Cauchy
	problems —— 28
2.6.1	The parabolic operator —— 28
2.6.2	The elliptic operator —— 31
2.6.3	A hyperbolic operator —— 32
2.7	Lipschitz stability estimate for an ill-posed problem for a hyperbolic
	equation —— 34
2.7.1	The pointwise case —— 35
2.7.2	The integral inequality —— 40
3	Global uniqueness for coefficient inverse problems and Lipschitz stability
	for a hyperbolic CIP —— 41
3.1	Estimating an integral —— 41
3.2	Hyperbolic equation —— 42
3.3	Hyperbolic equation when one of initial conditions equals zero —— 51
3.4	Parabolic equations —— 55
3.4.1	Case 1: Parabolic and hyperbolic equations —— 56

3.4.2	Case 2: The data at $\{t = t_0 \in (0, T)\}$ as well as the lateral Cauchy data —— 59
3.4.3	Case 3: Final overdetermination —— 64
3.5	A coefficient inverse problem for an elliptic equation —— 67
3.6	Lipschitz stability estimate of a CIP for a hyperbolic equation —— 67
4	The quasi-reversibility numerical method for ill-posed Cauchy problems for
	linear PDEs —— 77
4.1	Introduction — 77
4.2	The Quasi-Reversibility Method (QRM) —— 79
4.2.1	The Carleman estimate —— 79
4.2.2	The Quasi-Reversibility Method (QRM) —— 80
4.3	Elliptic equation —— 84
4.4	Parabolic equation with the lateral Cauchy data —— 87
4.5	Hyperbolic equation with lateral Cauchy data —— 90
5	Convexification for ill-posed Cauchy problems for quasi-linear PDEs —— 93
5.1	Introduction —— 93
5.2	Some facts of the convex analysis —— 94
5.3	The general scheme of the method —— 97
5.3.1	The Cauchy problem —— 97
5.3.2	The pointwise Carleman estimate —— 99
5.3.3	Theorems —— 100
5.4	Proof of Theorem 5.3.1 —— 103
5.5	Proof of Theorem 5.3.2 —— 106
5.6	Proof of Theorem 5.3.4 —— 108
5.7	Proof of Theorem 5.3.5 —— 108
5.8	Specifying equations —— 109
5.8.1	Quasilinear elliptic equation —— 109
5.8.2	Quasilinear parabolic equation —— 110
5.8.3	Quasilinear hyperbolic equation —— 111
5.9	Numerical study —— 112
5.9.1	The forward problem —— 112
5.9.2	The ill-posed Cauchy problem and noisy data —— 114
5.9.3	Specifying the functional $J_{\lambda,\beta}$ —— 114
5.9.4	Minimization of $J_{\lambda,\beta}(v,F)$ — 115
5.9.5	Results —— 115
5.10	Summary —— 119
6	A special orthonormal basis in $L_2(a,b)$ for the convexification for CIPs
	without the initial conditions—restricted Dirichlet-to-Neumann map —— 121
6.1	Introduction —— 121

6.2	A CIP with the restricted DN data —— 122
6.2.1	The Carleman estimate —— 122
6.2.2	Statement of the problem — 123
6.2.3	A special orthonormal basis in $L_2(0,1)$ —— 125
6.3	An ill-posed problem for a coupled system of quasilinear PDEs —— 126
6.4	Convexification — 129
6.4.1	Weighted Tikhonov-like functional —— 129
6.4.2	Numerical scheme —— 134
6.5	Two specific examples —— 134
6.5.1	Parabolic equation —— 134
6.5.2	Hyperbolic equation —— 136
7	Convexification of electrical impedance tomography with restricted
	Dirichlet-to-Neumann map data —— 139
7.1	Introduction —— 139
7.2	EIT with restricted Dirichlet-to-Neumann (DtN) data —— 140
7.2.1	The mathematical model —— 140
7.2.2	An equivalent problem —— 142
7.3	Cauchy problem for a system of coupled quasilinear elliptic
	equations —— 143
7.3.1	The orthonormal basis of Section 6.2.3 —— 143
7.3.2	Cauchy problem for a system of coupled quasilinear elliptic
	equations —— 143
7.3.3	Two new Carleman estimates —— 145
7.3.4	Hölder stability and uniqueness of the Cauchy problem (7.21),
	(7.23) —— 150
7.4	Convexification —— 151
7.5	Theorems —— 152
7.5.1	Formulations of theorems —— 152
7.5.2	Proof of Theorem 7.5.1 —— 155
7.5.3	Proof of Theorem 7.5.4 —— 158
7.5.4	Proof of Theorem 7.5.5 —— 160
7.6	Numerical studies —— 160
7.6.1	Some details of the numerical implementation —— 160
7.6.2	A multilevel method of the minimization of functional (7.52) —— 162
7.6.3	Numerical testing —— 162
8	Convexification for a coefficient inverse problem for a hyperbolic equation
	with a single location of the point source —— 171
8.1	Introduction —— 171
8.2	Statement of the inverse problem —— 172
8.3	A system of coupled quasi-linear elliptic equations —— 174

8.3.1	The function $w(\mathbf{x},t)$ —— 174
8.3.2	The system of coupled quasi-linear elliptic PDEs —— 176
8.4	Globally strictly convex Tikhonov-like functional —— 178
8.4.1	The functional —— 178
8.4.2	Theorems —— 180
8.5	Proofs —— 182
8.5.1	Proof of Theorem 8.4.1 —— 182
8.5.2	Proof of Theorem 8.4.2 —— 185
8.5.3	Proof of Theorem 8.4.6 —— 187
8.6	Numerical studies —— 188
8.6.1	Some details of the numerical implementation —— 189
8.6.2	A multilevel minimization method of the functional $J_{\lambda}(W)$ —— 191
8.6.3	Numerical testing —— 191
9	Convexification for an inverse parabolic problem —— 199
9.1	Introduction —— 199
9.2	Statement of the coefficient inverse problem —— 199
9.3	Weighted globally strictly convex Tikhonov-like functional —— 201
9.3.1	Nonlinear integral differential equation —— 201
9.3.2	The functional —— 202
9.4	Theorems —— 204
9.5	Proofs of Theorems 9.4.2 and 9.4.4 —— 210
9.5.1	Proof of Theorem 9.4.2 —— 210
9.5.2	Proof of Theorem 9.4.4 213
9.6	Proof of Theorem 9.4.5 —— 214
9.7	Proof of Theorem 9.4.7 —— 217
9.8	Numerical testing —— 218
9.9	Proof of Theorem 9.4.1 —— 221
10	Experimental data and convexification for the recovery of the dielectric
	constants of buried targets using the Helmholtz equation —— 229
10.1	Introduction —— 229
10.2	Statement of the coefficient inverse problem —— 231
10.3	An auxiliary system of coupled quasilinear elliptic equations —— 233
10.3.1	An equation without the unknown coefficient —— 233
10.3.2	Truncated Fourier series —— 235
10.3.3	Boundary data (10.24), (10.25) —— 237
10.3.4	Lipschitz stability of the boundary value problem
	(10.23)–(10.25) —— 238
10.4	Weighted Tikhonov-like functional —— 240
10.5	Analysis of the functional $J_{\lambda \nu}(V)$ — 241

10.5.1	Strict convexity on $\overline{B(M)}$ — 241
10.5.2	The minimizer of $J_{\lambda,\gamma}(V)$ on $\overline{B(M)}$ —— 245
10.5.3	The distance between the minimizer and the "ideal" solution —— 245
10.6	The globally convergent gradient projection method —— 248
10.7	Work with experimental data —— 250
10.7.1	Experimental setup —— 250
10.7.2	Buried targets to be imaged —— 251
10.7.3	The necessity of data propagation —— 252
10.7.4	Data propagation revisited —— 254
10.7.5	Computational setup —— 257
10.7.6	Reconstruction results —— 261
11	Travel time tomography with formally determined incomplete data in
	3D — 263
11.1	Introduction —— 263
11.2	Statement of the problem —— 265
11.3	A special orthonormal basis — 267
11.4	Estimate of $\tau_z^2(\mathbf{x}, \alpha)$ from the below —— 267
11.5	A boundary value problem for a system of nonlinear coupled
	integro-differential equations —— 269
11.5.1	A nonlinear integro-differential equation —— 269
11.5.2	Boundary value problem for a system of coupled integro- differential
	equations —— 270
11.5.3	The positivity of the function $(u_0 + w + g)(\mathbf{x}, \alpha)$ —— 272
11.5.4	Applying the multidimensional analog of Taylor formula —— 273
11.6	Problem (11.53), (11.54) in the semidiscrete form —— 276
11.7	Lipschitz stability and uniqueness —— 281
11.8	Weighted globally strictly convex Tikhonov-like functional —— 282
11.8.1	Estimating an integral —— 282
11.8.2	The functional —— 283
11.9	Proofs of Theorems 11.8.1 and 11.8.4 —— 286
11.9.1	Proof of Theorem 11.8.1 —— 286
11.9.2	Proof of Theorem 11.8.4 —— 288
12	Numerical solution of the linearized travel time tomography problem with
	incomplete data —— 291
12.1	Introduction —— 291
12.2	The linearization —— 293
12.3	A boundary value problem for a system of coupled PDEs of the first
	order —— 296
12.4	The QRM in partial finite differences —— 300
12.5	Numerical implementation —— 303

XVI — Contents

12.5.1 Numerical tests — 304

Bibliography --- 311

Index --- 323