

Contents

Preface *xvii*

1	Characterization of Protein Molecules Prepared by Total Chemical Synthesis	1
	<i>Stephen B. H. Kent</i>	
1.1	Introduction	1
1.2	Chemical Protein Synthesis	2
1.3	Comments on Characterization of Synthetic Protein Molecules	8
1.3.1	Homogeneity	8
1.3.2	Amino Acid Sequence	9
1.3.3	Chemical Analogues	10
1.3.4	Limitations of SPPS	10
1.3.5	Folding as a Purification Step	10
1.4	Summary	12
	References	12
2	Automated Fast Flow Peptide Synthesis	17
	<i>Mark D. Simon, Alexander J. Mijalis, Kyle A. Totaro, Daniel Dunkelmann, Alexander A. Vinogradov, Chi Zhang, Yuta Maki, Justin M. Wolfe, Jessica Wilson, Andrei Loas, and Bradley L. Pentelute</i>	
2.1	Introduction	17
2.2	Results	19
2.2.1	Summary	19
2.2.1.1	Mechanical Principles	20
2.2.1.2	Chemical Principles	20
2.2.1.3	User Interface Principles	20
2.2.1.4	Data Analysis Method	20
2.2.1.5	Outcome	21
2.2.2	First-generation Automated Fast Flow Peptide Synthesis	21
2.2.2.1	Key Findings	21
2.2.2.2	Design of First-generation AFPS	21
2.2.2.3	Characterization of First-generation AFPS	23
2.2.3	Second-generation Automated Fast Flow Peptide Synthesis	24

2.2.3.1	Key Findings	24
2.2.3.2	Design of Second-generation AFPS	24
2.2.3.3	Characterization and Use of Second-generation AFPS	26
2.2.4	Third-generation Automated Fast Flow Peptide Synthesis	32
2.2.4.1	Key Findings	32
2.2.4.2	Design of Third-generation AFPS	34
2.2.4.3	Characterization of Third-generation AFPS	39
2.2.4.4	Reagent Stability Study	43
2.2.5	Fourth-generation Automated Fast Flow Peptide Synthesis	45
2.2.5.1	Key Findings	45
2.2.5.2	Effect of Solvent on Fast Flow Synthesis	45
2.2.5.3	Design and Characterization of Fourth-generation AFPS	45
2.3	Conclusions	49
	Acknowledgments	53
	References	53
3	<i>N,S- and N,Se-Acyl Transfer Devices in Protein Synthesis</i>	59
	<i>Vincent Diemer, Jennifer Bouchenna, Florent Kerdraon, Vangelis Agouridas, and Oleg Melnyk</i>	
3.1	Introduction	59
3.2	<i>N,S- and N,Se-Acyl Transfer Devices: General Presentation, Reactivity and Statistical Overview of Their Utilization</i>	61
3.2.1	General Presentation of <i>N,S- and N,Se-Acyl Transfer Devices</i>	61
3.2.2	Relative Reactivity of <i>N,S- and N,Se-Acyl Transfer Devices</i>	63
3.2.3	A Statistical Overview of the Synthetic Use of <i>N,S- and N,Se-Acyl Transfer Devices</i> for Protein Total Chemical Synthesis	64
3.3	Preparation of SEA/SeEA ^{off} and SEAAlide Peptides	68
3.3.1	Preparation of SEA and SeEA Peptides	68
3.3.2	Preparation of SEAAlide Peptides	70
3.4	Redox-controlled Assembly of Biotinylated NK1 Domain of the Hepatocyte Growth Factor (HGF) Using SEA and SeEA Chemistries	71
3.5	The Total Chemical Synthesis of GM2-AP Using SEAAlide-based Chemistry	75
3.6	Conclusion	79
	References	80
4	<i>Chemical Synthesis of Proteins Through Native Chemical Ligation of Peptide Hydrazides</i>	87
	<i>Chao Zuo, Xiaodan Tan, Xianglong Tan, and Lei Liu</i>	
4.1	Introduction	87
4.2	Development of Peptide Hydrazide-based Native Chemical Ligation	88
4.2.1	Conversion of Peptide Hydrazide to Peptide Azide	88
4.2.2	Acyl Azide-based Solid-phase Peptide Synthesis	88
4.2.3	Acyl Azide-based Solution-phase Peptide Synthesis	89
4.2.4	The Transesterification of Acyl Azide	90

4.2.5	Development of Peptide Hydrazide-based Native Chemical Ligation	90
4.3	Optimization of Peptide Hydrazide-based Native Chemical Ligation	91
4.3.1	Preparation of Peptide Hydrazides	91
4.3.1.1	2-Cl-Trt-Cl Resin	91
4.3.1.2	Peptide Hydrazides from Expressed Proteins	92
4.3.1.3	Sortase-mediated Hydrazide Generation	93
4.3.2	Activation Methods of Peptide Hydrazide	94
4.3.2.1	Knorr Pyrazole Synthesis	94
4.3.2.2	Activation in TFA	94
4.3.3	Ligation Sites of Peptide Hydrazide	95
4.3.4	Multiple Fragment Ligation Based on Peptide Hydrazide	96
4.3.4.1	N-to-C Sequential Ligation	96
4.3.4.2	Convergent Ligation	96
4.3.4.3	One-pot Ligation	96
4.4	Application of Peptide Hydrazide-based Native Chemical Ligation	99
4.4.1	Peptide Drugs and Diagnostic Tools	99
4.4.1.1	Peptide Hydrazides for Cyclic Peptide Synthesis	99
4.4.1.2	Screening for D Peptide Inhibitors Targeting PD-L1	99
4.4.1.3	Chemical Synthesis of DCAF for Targeted Antibody Blocking	101
4.4.1.4	Peptide Toxins	101
4.4.2	Synthesis and Application of Two-photon Activatable Chemokine CCL5	102
4.4.3	Proteins with Posttranslational Modification	103
4.4.3.1	The Synthesis of Glycosylation-modified Full-length IL-6	103
4.4.3.2	The Chemical Synthesis of EPO	105
4.4.3.3	Chemical Synthesis of Homogeneous Phosphorylated p62	105
4.4.3.4	Chemical Synthesis of K19, K48 Bi-acetylated Atg3 Protein	105
4.4.4	Ubiquitin Chains	108
4.4.4.1	Synthesis of K27-linked Ubiquitin Chains	108
4.4.4.2	Synthesis of Atypical Ubiquitin Chains by Using an Isopeptide-linked Ub Isomer	109
4.4.4.3	Synthesis of Atypical Ubiquitin Chains Using an Isopeptide-linked Ub Isomer	109
4.4.5	Modified Nucleosomes	110
4.4.5.1	Synthesis of DNA-barcoded Modified Nucleosome Library	110
4.4.5.2	Synthesis of Modified Histone Analogs with a Cysteine Aminoethylation-assisted Chemical Ubiquitination Strategy	111
4.4.5.3	Synthesis of Ubiquitylated Histones for Examination of the Deubiquitination Specificity of USP51	111
4.4.6	Membrane Proteins	112
4.4.7	Mirror-image Biological Systems	112
4.5	Summary and Outlook	113
	References	114

5	Expanding Native Chemical Ligation Methodology with Synthetic Amino Acid Derivatives	119
	<i>Emma E. Watson, Lara R. Malins, and Richard J. Payne</i>	
5.1	Native Chemical Ligation	120
5.2	Desulfurization Chemistries	120
5.3	Aspartic Acid (Asp, D)	122
5.4	Glutamic Acid (Glu, E)	124
5.5	Phenylalanine (Phe, F)	125
5.6	Isoleucine (Ile, I)	127
5.7	Lysine (Lys, K)	130
5.8	Leucine (Leu, L)	133
5.9	Asparagine (Asn, N)	135
5.10	Proline (Pro, P)	138
5.11	Glutamine (Gln, Q)	139
5.12	Arginine (Arg, R)	139
5.13	Threonine (Thr, T)	140
5.14	Valine (Val, V)	142
5.15	Tryptophan (Trp, W)	144
5.16	Application of Selenocysteine (Sec) to Ligation Chemistry	146
5.17	Aspartic Acid (Asp, D)	147
5.18	Glutamic Acid (Glu, E)	148
5.19	Phenylalanine (Phe, F)	149
5.20	Leucine (Leu, L)	151
5.21	Proline (Pro, P)	151
5.22	Serine (Ser, S)	153
	References	155
6	Peptide Ligations at Sterically Demanding Sites	161
	<i>Yinglu Wang and Suwei Dong</i>	
6.1	Introduction	161
6.2	Ligations Using Thioesters	162
6.2.1	Exogenous Additive-promoted Ligations	162
6.2.2	Ligations Using Reactive Thioesters	167
6.2.3	Internal Activation Strategy in Peptide Ligations	169
6.3	Ligations Using Oxo-esters	170
6.4	Peptide Ligations Based on Selenoesters	170
6.5	Microfluidics-promoted NCL	175
6.6	Representative Applications in Protein Synthesis	178
6.7	Summary and Outlook	181
	References	181
7	Controlling Segment Solubility in Large Protein Synthesis	185
	<i>Riley J. Giesler, James M. Fulcher, Michael T. Jacobsen, and Michael S. Kay</i>	
7.1	Solvent Manipulation	185

7.2	Isoacyl Strategy	187
7.3	Semipermanent Solubilizing Tags	191
7.3.1	N- or C-Terminal Solubilizing “Tails”	192
7.3.2	Reversible Backbone Modifications as Solubilizing Tags	194
7.3.3	Building Block Solubilizing Tags	195
7.3.4	Extendable Side-chain-based Solubilizing Tags	195
	References	198
8	Toward HPLC-free Total Chemical Synthesis of Proteins	211
	<i>Phuc Ung and Oliver Seitz</i>	
8.1	Introduction	211
8.1.1	Capture and Release Purification	212
8.1.2	Solid-phase Chemical Ligations (SPCL)	212
8.2	Synthesis of Peptide Segments for Native Chemical Ligation	213
8.2.1	HPLC-free Preparation of N-terminal Peptide Segments for NCL	213
8.2.2	HPLC-free Preparation of C-terminal Peptide Segments for NCL	217
8.3	Synthesis of Proteins Using the His ₆ Tag	220
8.3.1	Reversible His ₆ -based Capture Tags	220
8.3.2	His ₆ -based Immobilization for C-to-N Assembly of Crambin	221
8.3.3	His ₆ -based Immobilization for Assembly of Proteins on Microtiter Plates	222
8.3.4	His ₆ and Hydrazide Tags for Sequential N-to-C Capture and Release	225
8.4	Synthesis of Proteins via Oxime Formation	227
8.4.1	Reversible Oxime-based Capture Tags	227
8.4.2	Oxime-based Immobilization for N-to-C Solid-phase Chemical Ligations	227
8.4.3	Oxime-based Immobilization for C-to-N Solid-phase Chemical Ligations	233
8.4.4	Oxime-based C-to-N Solid-phase Chemical Ligations	237
8.5	Synthesis of Proteins via Hydrazone Formation	238
8.5.1	Reversible Hydrazone-based Capture Tags	238
8.5.2	Hydrazone-based Immobilization for Assembly of Proteins on Microtiter Plates	239
8.6	Synthesis of Proteins Using Click Chemistry	242
8.6.1	Click-based Immobilization for N-to-C Solid-phase Peptide Ligations Using a Protected Alkyne	242
8.6.2	Click-based Immobilization for N-to-C Solid-phase Peptide Ligations Using a Sea Group	243
8.7	Synthesis of Proteins Using the KAHA Ligation	244
8.7.1	The KAHA Ligation	244
8.7.2	HPLC-free Synthesis of Proteins Using the KAHA Ligation	245
8.8	Synthesis of Proteins Using Photocleavable Tags	246
8.8.1	Synthesis of Proteins Using a Photocleavable Biotin-based Purification Tag	246

8.8.2	Synthesis of Proteins Using a Photocleavable His ₆ -based Purification Tag	247
8.9	Conclusion	249
	References	251
9	Solid-phase Chemical Ligation	259
	<i>Skander A. Abboud, Agnès F. Delmas, and Vincent Aucagne</i>	
9.1	Introduction	259
9.1.1	The Promises of Solid Phase Chemical Ligation (SPCL)	259
9.1.2	Chemical Ligation Reactions Used for SPCL	260
9.1.3	Key Requirements for a SPCL Strategy	261
9.2	SPCL in the C-to-N Direction	262
9.2.1	Temporary Masking Groups to Enable Iterative Ligations	262
9.2.2	Linkers for C-to-N SPCL	264
9.2.2.1	Use of Same Linker and Solid Support for SPPS and SPCL	265
9.2.2.2	Re-immobilization of the C-Terminal Segment	266
9.3	SPCL in the N-to-C Direction	268
9.3.1	Temporary Masking Groups to Enable Iterative Ligations	268
9.3.2	Linkers for N-to-C SPCL	270
9.3.3	Case Study	272
9.3.4	SPCL with Concomitant Purifications	274
9.4	Post-Ligation Solid-Supported Transformations	274
9.4.1	Chemical Transformations	274
9.4.2	Biochemical Transformations	275
9.5	Solid Support	275
9.6	Conclusion and Perspectives	278
	Acknowledgment	278
9.A	Appendix	278
	References	280
10	Ser/Thr Ligation for Protein Chemical Synthesis	285
	<i>Carina Hey Pui Cheung and Xuechen Li</i>	
10.1	Serine/Threonine Ligation	287
10.2	Epimerization Issue	289
10.3	Other Aryl Aldehyde Esters	289
10.4	Preparation of Peptide Salicylaldehyde Esters	289
10.5	Scope and Limitations	294
10.6	Strategies of Ser/Thr Ligation for Protein Chemical Synthesis	294
10.7	C-to-N Ser/Thr Ligation	294
10.8	N-to-C Ser/Thr Ligation	296
10.9	One-pot Ser/Thr Ligation and NCL	296
10.10	Bioconjugation	296
10.11	Solubility Issues	298
10.12	Extension of Ser/Thr Ligation	298
10.13	Conclusion	302
	References	303

11	Protein Semisynthesis	307
	<i>Nam Chu and Philip A. Cole</i>	
11.1	Background	307
11.2	Expressed Protein Ligation (EPL)	308
11.2.1	Method Development	308
11.2.2	Applications of EPL for Studying Protein Posttranslational Modifications	309
11.2.3	Site-specific Protein Labeling with <i>N</i> -Hydroxysuccinimide Esters	311
11.3	Cysteine Modifications	311
11.3.1	Dehydroalanine Generation and Applications in Semisynthesis	312
11.3.2	Cysteine Alkylation-related Methods to Introduce Lys Mimics	313
11.4	Enzyme-catalyzed Protein/Peptide Ligations	314
11.4.1	Sortase	314
11.4.2	Butelase-1	316
11.4.3	Subtiligase	317
11.4.4	Trypsiligase	318
11.5	Enzyme-catalyzed Expressed Protein Ligation	318
11.6	Summary and Outlook	319
	Acknowledgments	320
	References	320
12	Bio-orthogonal Imine Chemistry in Chemical Protein Synthesis	327
	<i>Stijn M. Agten, Ingrid Dijkgraaf, Stan H. E. van der Beelen, and Tilman M. Hackeng</i>	
12.1	Introduction	327
12.2	Carbonyl Functionalization	328
12.3	Aminooxy, Hydrazine, and Hydrazide Functionalization	335
12.4	Oxime Ligation	337
12.5	Hydrazone Ligation	342
12.6	Pictet-Spengler Reaction	344
12.7	Catalysis of Oxime and Hydrazone Ligations	346
	References	348
13	Deciphering Protein Folding Using Chemical Protein Synthesis	357
	<i>Vladimir Torbeev</i>	
13.1	Introduction	357
13.2	Modification of Protein Backbone Amides	358
13.3	Insertion of β -turn Mimetics	361
13.4	Inversion of Chiral Centers in Protein Backbone and Side Chains	362
13.5	Modulating <i>cis-trans</i> Proline Isomerization	366
13.6	Steering Oxidative Protein Folding	368
13.7	Covalent Tethering to Facilitate Folding of Designed Proteins	371
13.8	Discovery of Previously Unknown Protein Folds	373

13.9	Site-specific Labeling with Fluorophores	373
13.10	Foldamers and Foldamer-Peptide Hybrids	375
13.11	Conclusions and Outlook	377
	Acknowledgement	378
	References	378
14	Chemical Synthesis of Ubiquitinated Proteins for Biochemical Studies	383
	<i>Gandhesiri Satish, Ganga B. Vamisetti, and Ashraf Brik</i>	
14.1	The Ubiquitin System	383
14.2	Non-enzymatic Ubiquitination: Challenges and Opportunities	386
14.2.1	Chemical Synthesis of Ub Building Blocks	387
14.2.2	Isopeptide Ligation	387
14.2.3	Total Chemical Synthesis of Tetra-Ub Chains	390
14.3	Synthesis and Semisynthesis of Ubiquitinated Proteins	393
14.3.1	Monoubiquitinated Proteins	393
14.3.2	Tetra-ubiquitinated Proteins	395
14.3.3	Modification of Expressed Proteins with Tetra-Ub	400
14.4	Synthesis of Unique Ub Conjugates to Study and Target DUBs	401
14.5	Activity-based Probes	403
14.6	Perspective	405
	List of Abbreviations	406
	References	407
15	Glycoprotein Synthesis	411
	<i>Chaitra Chandrashekhar, Kento Iritani, Tatsuya Moriguchi, and Yasuhiro Kajihara</i>	
15.1	Introduction	411
15.2	Total Chemical Synthesis of Glycoproteins	411
15.3	Semisynthesis of Glycoproteins	413
15.4	Chemoenzymatic Synthesis	413
15.5	α -Synuclein	414
15.6	Hirudin P6	415
15.7	Saposin D	416
15.8	Interleukin 2	417
15.9	Interleukin 25	417
15.10	Mucin 1	419
15.11	Crambin	421
15.12	Tau Protein	422
15.13	Chemical Domain of Fractalkine	423
15.14	CCL1	424
15.15	Interleukin 6	424
15.16	Interleukin 8	425
15.17	Erythropoietin	426
15.18	Trastuzumab	430

15.19	Antifreeze Glycoprotein	432
15.20	Conclusion	434
	References	434
16	Chemical Synthesis of Membrane Proteins	437
	<i>Alanca Schmid and Christian F.W. Becker</i>	
16.1	Introduction	437
16.2	Solid Phase Synthesis of TM Peptides	438
16.3	Purification and Handling Strategies of TM Peptides	442
16.4	Solubility Tags	443
16.4.1	Terminal Tags	443
16.4.2	Side Chain Tags	445
16.5	Removable Solubilizing Backbone Tags	445
16.6	Chemical Synthesis of Membrane Proteins	449
16.6.1	Proteins With 1 TM Domain	449
16.6.2	Proteins with 2 TM Domains	450
16.6.3	Proteins with 3 and More TM Domains	454
16.7	Outlook	456
	References	457
17	Chemical Synthesis of Selenoproteins	463
	<i>Rebecca N. Dardashti, Reem Ghadir, Hiba Ghareeb, Orit Weil-Ktorza, and Norman Metanis</i>	
17.1	What are Selenoproteins?	463
17.2	Expression of Selenoproteins	466
17.3	Sec as a Reactive Handle	469
17.4	Synthesis and Semisynthesis of Natural Selenoproteins	473
17.5	Selenium as a Tool for Protein Folding	475
17.6	Conclusions	478
	References	478
18	Histone Synthesis	489
	<i>Champak Chatterjee</i>	
18.1	The Histones and Their Chemical Modifications	489
18.1.1	Histone Proteins	489
18.1.2	Histone Posttranslational Modifications	490
18.2	Chemical Ligation for Histone Synthesis	492
18.2.1	Native Chemical Ligation	492
18.2.2	Expanding the Scope of Native Chemical Ligation With Inteins	494
18.3	Histone Octamer and Nucleosome Core Particle Assembly	494
18.4	Studying the Histone Code With Synthetic Histones	496
18.4.1	Synthesis of Histones Modified by Smaller Functional Groups	497
18.4.1.1	Histone Phosphorylation	497
18.4.1.2	Histone Acetylation	499
18.4.1.3	Histone Methylation	502

18.4.2	Synthesis of Sumoylated Histones	505
18.5	Conclusions	506
	Acknowledgments	506
	References	506
19	Application of Chemical Synthesis to Engineer Protein Backbone Connectivity	515
	<i>Chino C. Cabalteja and W. Seth Horne</i>	
19.1	Introduction	515
19.2	Backbone Engineering to Facilitate Synthesis	516
19.3	Backbone Engineering to Explore the Consequences of Chirality	517
19.4	Backbone Engineering to Understand and Control Folding	520
19.5	Backbone Engineering to Create Protein Mimetics	522
19.6	Conclusions	525
	References	526
20	Beyond Phosphate Esters: Synthesis of Unusually Phosphorylated Peptides and Proteins for Proteomic Research	533
	<i>Anett Hauser, Christian E. Stieger, and Christian P. R. Hackenberger</i>	
20.1	Introduction	533
20.2	General Methods for the Incorporation of Hydroxy-phosphorylated Amino Acids into Peptides and Proteins	534
20.3	Incorporation of Other Phosphorylated Nucleophilic Amino Acids into Peptides and Proteins	537
20.3.1	Phosphoarginine (pArg)	537
20.3.2	Phosphohistidine (pHis)	538
20.3.3	Phospholysine (pLys)	539
20.3.4	Phosphocysteine (pCys)	539
20.3.5	Pyrophosphorylation of Serine and Threonine (ppSer, ppThr)	541
20.4	Development of Phospho-analogues as Mimics for Endogenous Phospho-Amino Acids	541
20.4.1	Analogues of Phosphoserine, Phosphothreonine, and Phosphotyrosine	541
20.4.2	Stable Analogues of Phosphoaspartate and Phosphoglutamate	543
20.4.3	Stable Analogues of Phosphoarginine	544
20.4.4	Stable Analogues of Phosphohistidine	545
20.4.5	Stable Analogues of Pyrophosphorylated Serine	547
20.5	Conclusion	547
	References	547
21	Cyclic Peptides via Ligation Methods	553
	<i>Tristan J. Tyler and David J. Craik</i>	
21.1	Introduction	553
21.2	Cyclic Peptide Synthesis	554

21.3	Orbitides	557
21.4	Paws-derived Peptides(PDPs)	559
21.5	Cyclic Conotoxins	561
21.6	θ-Defensins	563
21.7	Cyclotides	563
21.8	Outlook	568
	Acknowledgements	568
	Funding	568
	References	569

Index	579
--------------	-----