Contents

1	Introduction
	1.1 On Spatial Data Mining and Knowledge Discovery
	1.2 What Makes Spatial Data Mining Different
	1.3 On Spatial Knowledge
	1.4 On Spatial Data
	1.5 Basic Tasks of Knowledge Discovery in Spatial Data
	1.6 Issues of Knowledge Discovery in Spatial Data 10
	1.7 Methodological Background for Knowledge Discovery
	in Spatial Data 1
	1.8 Organization of the Book
2	Discovery of Intrinsic Clustering in Spatial Data
	2.1 A Brief Background About Clustering
	2.2 Discovery of Clustering in Space by Scale Space Filtering
	2.2.1 On Scale Space Theory for Hierarchical Clustering
	2.2.2 Hierarchical Clustering in Scale Space
	2.2.3 Cluster Validity Check
	2.2.4 Clustering Selection Rules
	2.2.5 Some Numerical Examples
	2.2.6 Discovering Land Covers in Remotely Sensed Images 32
	2.2.7 Mining of Seismic Belts in Vector-Based Databases 36
	2.2.8 Visualization of Temporal Seismic Activities via
	Scale Space Filtering
	2.2.9 Summarizing Remarks on Clustering by Scale
	Space Filtering 40
	2.3 Partitioning of Spatial Data by a Robust Fuzzy Relational Data
	Clustering Method
	2.3.1 On Noise and Scale in Spatial Partitioning 50
	2.3.2 Clustering Algorithm with Multiple Scale Parameters
	for Noisy Data 5
	2.3.3 Robust Fuzzy Relational Data Clustering Algorithm 54

		2.3.4 Numerical Experiments	57
	2.4	Partitioning of Spatial Object Data by Unidimensional Scaling	61
		2.4.1 A Note on the Use of Unidimensional Scaling	
		2.4.2 Basic Principle of Unidimensional Scaling in	
		Data Clustering	62
		2.4.3 Analysis of Simulated Data	64
		2.4.4 UDS Clustering of Remotely Sensed Data	66
	2.5	Unraveling Spatial Objects with Arbitrary Shapes	
		Through Mixture Decomposition Clustering	70
		2.5.1 On Noise and Mixture Distributions in Spatial Data	70
		2.5.2 A Remark on the Mining of Spatial Features with	
		Arbitrary Shapes	74
		2.5.3 A Spatial-Feature Mining Model (RFMM) Based on	
		Regression-Class Mixture Decomposition (RCMD)	
		2.5.4 The RFMM with Genetic Algorithm (RFMM-GA)	78
		2.5.5 Applications of RFMM-GA in the Mining of Features	
		in Remotely Sensed Images	
	2.6	Cluster Characterization by the Concept of Convex Hull	
		2.6.1 A Note on Convex Hull and its Computation	84
		2.6.2 Basics of the Convex Hull Computing Neural Network	
		(CHCNN) Model	
		2.6.3 The CHCNN Architecture	
		2.6.4 Applications in Cluster Characterization	94
•	C4 -	4!-4! A	
3		tistical Approach to the Identification of Separation Surface	07
		Spatial Data	
	3.2	The Bayesian Approach to Data Classification	
		3.2.2 Naive Bayes Method and Feature Selection	100
		in Data Classification	101
		3.2.3 The Application of Naïve Bayes Discriminant Analysis	101
		in Client Segmentation for Product Marketing	102
		3.2.4 Robust Bayesian Classification Model	
	2 2	Mixture Discriminant Analysis	
	3.3	3.3.1 A Brief Statement About Mixture Discriminant Analysis	
		3.3.2 Mixture Discriminant Analysis by Optimal Scoring	
		3.3.3 Analysis Results and Interpretations	
	2 1	The Logistic Model for Data Classification	
	3.4	3.4.1 A Brief Note About Using Logistic Regression	11/
		as a Classifier	117
		3.4.2 Data Manipulation for Client Segmentation	112
		3.4.3 Logistic Regression Models and Strategies	110
		for Credit Card Promotion	110
		3.4.4 Model Comparisons and Validations	
		5.4.4 IVIOUCI COMPANSONS AND VAIDATIONS	123

Contents xvii

	3.5	Support Vector Machine for Spatial Classification	130
		3.5.1 Support Vector Machine as a Classifier	
		3.5.2 Basics of Support Vector Machine	131
		3.5.3 Experiments on Feature Extraction and Classification	
		by SVM	136
1		orithmic Approach to the Identification of Classification	
			143
			143
	4.2	The Classification Tree Approach to the Discovery of Classification	
			145
		4.2.1 A Brief Description of Classification and Regression tree	
		(CART)	
		4.2.2 Client Segmentation by CART	
	4.3		156
		4.3.1 On the Use of Neural Networks in Spatial Classification	156
		4.3.2 The Knowledge-Integrated Radial Basis Function (RBF)	
		Model for Spatial Classification	159
		4.3.3 An Elliptical Basis Function Network for Spatial	
		Classification	
	4.4		183
		4.4.1 A Brief Note on Using GA to Discover Fuzzy	
		Classification Rules	
		4.4.2 A General Framework of the Fuzzy Classification System	
		4.4.3 Fuzzy Rule Acquisition by GANGO	186
		4.4.4 An Application in the Classification of Remote	
		Sensing Data	194
	4.5	The Rough Set Approach to the Discovery of Classification	
			196
		4.5.1 Basic Ideas of the Rough Set Methodology for Knowledge	
		Discovery	196
		4.5.2 Basic Notions Related to Spatial Information Systems	
		and Rough Sets	198
		4.5.3 Interval-Valued Information Systems and Data	
		Transformation	200
		4.5.4 Knowledge Discovery in Interval-Valued Information	
		Systems	202
		4.5.5 Discovery of Classification Rules for Remotely	
		Sensed Data	
		4.5.6 Classification of Tree Species with Hyperspectral Data	
	4.6	A Vision-Based Approach to Spatial Classification	
		4.6.1 On Scale and Noise in Spatial Data Classification	216
		4.6.2 The Vision-Based Classification Method	
		4.6.3 Experimental Results	
	47	A Remark on the Choice of Classifiers	221

xviii Contents

5	Dis	covery of Spatial Relationships in Spatial Data	223
	5.1	On Mining Spatial Relationships in Spatial Data	223
	5.2	Discovery of Local Patterns of Spatial Association	225
		5.2.1 On the Measure of Local Variations of Spatial	
		Associations	225
		5.2.2 Local Statistics and their Expressions as a Ratio	
		of Quadratic Forms	227
	5.3	Dicovery of Spatial Non-Stationarity Based on	
		the Geographically Weighted Regression Model	236
		5.3.1 On Modeling Spatial Non-Stationarity within the	
		Parameter-Varying Regression Framework	236
		5.3.2 Geographically Weighted Regression and the	
		Local-Global Issue About Spatial Non-Stationarity	238
		5.3.3 Local Variations of Regional Industrialization in	
		Jiangsu Province, P.R. China	244
		5.3.4 Discovering Spatial Pattern of Influence of Extreme	
		Temperatures on Mean Temperatures in China	250
	5.4	Testing for Spatial Autocorrelation in Geographically	
		Weighted Regression	254
	5.5	A Note on the Extentions of the GWR Model	258
	5.6	Discovery of Spatial Non-Stationarity Based on	
		the Regression-Class Mixture Decomposition Method	260
		5.6.1 On Mixture Modeling of Spatial Non-Stationarity	
		in a Noisy Environment	260
		5.6.2 The Notion of a Regression Class	262
		5.6.3 The Discovery of Regression Classes under Noise	
		Contamination	263
		5.6.4 The Regression-Class Mixture Decomposition (RCMD)	
		Method for knowledge Discovery in Mixed Distribution	
		5.6.5 Numerical Results and Observations	
		5.6.6 Comments About the RCMD Method	
		5.6.7 A Remote Sensing Application	
		5.6.8 An Overall View about the RCMD Method	276
_			
6		covery of Structures and Processes in Temporal Data	277
	6.1	A Note on the Discovery of Generating Structures or	0.77
		Processes of Time Series Data	277
	6.2	The Wavelet Approach to the Mining of Scaling	250
		Phenomena in Time Series Data	
		6.2.1 A Brief Note on Wavelet Transform	
		6.2.2 Basic Notions of Wavelet Analysis	
		6.2.3 Wavelet Transforms in High Dimensions	
		6.2.4 Other Data Mining Tasks by Wavelet Transforms	286
		6.2.5 Wavelet Analysis of Runoff Changes in the Middle	•
		and Upper Reaches of the Yellow River in China	286

Contents

		6.2.6 Wavelet Analysis of Runoff Changes of the	
		Yangtze River Basin	289
	6.3	Discovery of Generating Structures of Temporal Data with	
		Long-Range Dependence	292
		6.3.1 A Brief Note on Multiple Scaling and Intermittency	
		of Temporal Data	292
		6.3.2 Multifractal Approach to the Identification of Intermittency	
		in Time Series Data	293
		6.3.3 Experimental Study on Intermittency of Air Quality Data	
		Series	297
	6.4	Finding the Measure Representation of Time Series with	
		Intermittency	301
		6.4.1 Multiplicative Cascade as a Characterization of the	
		Time Series Data	301
		6.4.2 Experimental Results	302
	6.5	Discovery of Spatial Variability in Time Series Data	
		6.5.1 Multifractal Analysis of Spatial Variability Over Time	
		6.5.2 Detection of Spatial Variability of Rainfall Intensity	
	6.6	Identification of Multifractality and Spatio-Temperal Long	
		Range Dependence in Multiscaling Remote Sensing	312
		6.6.1 A Note on Multifractality and Long-Range Dependence	
		in Remote Sensing Data	312
		6.6.2 A Proposed Methodology for the Analysis	
		of Multifractality and Long-Range Dependence	
		in Remote Sensing Data	314
	6.7	A Note on the Effect of Trends on the Scaling Behavior	
	017	of Time Series with Long-Range Dependence	317
		co. Time series with zong xiange zeptiment, , , , , , , , , , , , , , , , , , ,	
7	Sur	nmary and Outlooks	321
•		Summary	321
		Directions for Further Research	322
		7.2.1 Discovery of Hierarchical Knowledge Structure from	
		Relational Spatial Data	322
		7.2.2 Errors in Spatial Knowledge Discovery	
		7.2.3 Other Challenges	
	73	Concluding Remark	
	1.5	Concluding Remark	_/_/
Ri	hlion	raphy	329
1	anog	rapny	247
Δ.	ıtho-	Index	351
(A.	HIIVI	Indta	JJ 1
Ç.,	hiec	t Index	357
Ju	OJEC	L ####################################	221