Contents

Preface ---- VII

Preface to the second edition ---- XI

1	Introduction —— 1
1.1	Gyroscopic stabilization on a rotating surface —— 1
1.1.1	Brouwer's mechanical model —— 1
1.1.2	Eigenvalue problems and the characteristic equation —— 2
1.1.3	Eigencurves and bifurcation of multiple eigenvalues —— 4
1.1.4	Singular stability boundary of the rotating saddle trap —— 8
1.2	Manifestations of Brouwer's model in physics —— 10
1.2.1	Stability of deformable rotors —— 10
1.2.2	Foucault's pendulum, Bryan's effect, Coriolis vibratory gyroscopes, and the Hannay–Berry phase —— 15
1.2.3	Polarized light within a cholesteric liquid crystal —— 17
1.2.4	Helical magnetic quadrupole focussing systems —— 18
1.2.5	Ponderomotive magnetism and the Cox-Levi theorem —— 20
1.2.6	Stability of Lagrange's triangular libration points L_4 and L_5 — 23
1.2.7	Modulational instability —— 26
1.3	Brouwer's problem with damping and circulatory forces —— 31
1.3.1	Circulatory forces —— 32
1.3.2	Dissipation-induced instability of negative energy modes —— 33
1.3.3	Circulatory systems and the destabilization paradox —— 34
1.3.4	Merkin's theorem, Nicolai's paradox, and subcritical flutter —— 36
1.3.5	Indefinite damping and parity-time (\mathcal{PT}) symmetry —— 37
1.3.6	$\mathcal{PT} ext{-symmetry, pseudo-Hermiticity, and G-Hamiltonian matrices}$ —— 41
1.3.7	Heavy damping and high-order exceptional points —— 42
1.4	Scope of the book —— 44
2	Lyapunov stability and linear stability analysis —— 47
2.1	Main facts and definitions —— 48
2.1.1	Stability, instability, and uniform stability —— 48
2.1.2	Attractivity and asymptotic stability —— 49
2.1.3	Autonomous, nonautonomous, and periodic systems —— 50
2.2	The direct (second) method of Lyapunov —— 50
2.2.1	Lyapunov functions —— 50
2.2.2	Lyapunov and Persidskii theorems on stability —— 51
2.2.3	Chetaev and Lyapunov theorems on instability —— 52

2.3	The indirect (first) method of Lyapunov —— 53
2.3.1	Linearization —— 53
2.3.2	The characteristic exponent of a solution —— 54
2.3.3	Lyapunov regularity of linearization —— 55
2.3.4	Stability and instability in the first approximation —— 56
2.4	Linear stability analysis —— 57
2.4.1	Autonomous systems —— 57
2.4.2	Lyapunov transformation and reducibility —— 58
2.4.3	Periodic systems —— 60
2.4.4	Example. Coupled parametric oscillators —— 61
2.5	Algebraic criteria for asymptotic stability —— 64
2.5.1	Lyapunov's matrix equation and stability criterion — 64
2.5.2	The Leverrier-Faddeev algorithm and Lewin's formula —— 65
2.5.3	Müller's solution to the matrix Lyapunov equation —— 66
2.5.4	Inertia theorems and observability index —— 67
2.5.5	Hermite's criterion via the matrix Lyapunov equation —— 68
2.5.6	Routh-Hurwitz, Liénard-Chipart, Bilharz, and Jury criteria —— 70
2.6	Robust Hurwitz stability vs. structural instability —— 72
2.6.1	Multiple eigenvalues: singularities and structural instabilities — 73
2.6.2	Multiple eigenvalues: spectral abscissa minimization and robust
	stability —— 75
2.6.3	Abscissa minimization and the self-stability of bicycles —— 77
3	Hamiltonian and gyroscopic systems —— 84
3.1	Sobolev's top and an indefinite metric —— 85
3.2	Elements of Pontryagin and Krein space theory —— 88
3.3	Canonical and Hamiltonian equations —— 91
3.3.1	Krein signature of eigenvalues —— 93
3.3.2	Krein collision or linear Hamiltonian-Hopf bifurcation —— 94
3.3.3	
221	MacKay's cones, veering, and instability bubbles —— 95
3.3.4	MacKay's cones, veering, and instability bubbles —— 95 Instability degree and count of eigenvalues —— 97
3.3.4 3.3.5	
	Instability degree and count of eigenvalues —— 97
3.3.5	Instability degree and count of eigenvalues —— 97 Graphical interpretation of the Krein signature —— 99
3.3.5 3.3.6	Instability degree and count of eigenvalues —— 97 Graphical interpretation of the Krein signature —— 99 Strong stability: robustness to Hamiltonian's variation —— 103
3.3.5 3.3.6 3.3.7	Instability degree and count of eigenvalues —— 97 Graphical interpretation of the Krein signature —— 99 Strong stability: robustness to Hamiltonian's variation —— 103 Inertia theorems and stability of gyroscopic systems —— 104
3.3.5 3.3.6 3.3.7 3.3.8	Instability degree and count of eigenvalues —— 97 Graphical interpretation of the Krein signature —— 99 Strong stability: robustness to Hamiltonian's variation —— 103 Inertia theorems and stability of gyroscopic systems —— 104 Positive and negative energy modes and Krein signature —— 105
3.3.5 3.3.6 3.3.7 3.3.8 3.3.9	Instability degree and count of eigenvalues — 97 Graphical interpretation of the Krein signature — 99 Strong stability: robustness to Hamiltonian's variation — 103 Inertia theorems and stability of gyroscopic systems — 104 Positive and negative energy modes and Krein signature — 105 Dispersive wave propagation in conservative systems — 107
3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10	Instability degree and count of eigenvalues — 97 Graphical interpretation of the Krein signature — 99 Strong stability: robustness to Hamiltonian's variation — 103 Inertia theorems and stability of gyroscopic systems — 104 Positive and negative energy modes and Krein signature — 105 Dispersive wave propagation in conservative systems — 107 Absolute and convective instability — 109
3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10	Instability degree and count of eigenvalues — 97 Graphical interpretation of the Krein signature — 99 Strong stability: robustness to Hamiltonian's variation — 103 Inertia theorems and stability of gyroscopic systems — 104 Positive and negative energy modes and Krein signature — 105 Dispersive wave propagation in conservative systems — 107 Absolute and convective instability — 109 Reversible and circulatory systems — 111

4.3.1	Divergence and flutter instabilities —— 114
4.3.2	Multiple parameter families of circulatory systems —— 114
4.3.3	Generic singularities on the stability boundary —— 115
4.4	Perturbation of eigenvalues —— 117
4.4.1	Simple eigenvalue —— 118
4.4.2	Double eigenvalue of geometric multiplicity 1 —— 119
4.4.3	Double eigenvalue of geometric multiplicity 2 —— 121
4.4.4	Triple eigenvalue of geometric multiplicity 1 —— 122
4.5	Geometry of the stability boundary —— 124
4.5.1	Linear and quadratic approximations at smooth points —— 124
4.5.2	Singularities in two-parameter circulatory systems —— 126
4.5.3	Example. Stabilization of comfortable walking —— 130
4.5.4	Singularities in three-parameter circulatory systems —— 133
4.5.5	The cone $\alpha\alpha$ and Merkin's instability theorem —— 141
4.5.6	Example: a brake disk in distributed frictional contact —— 142
4.5.7	Example: stability of an airfoil in an inviscid flow —— 145
4.6	Eigencurves, their crossing and veering —— 149
4.6.1	Convex flutter domain: conical point $\alpha\alpha$ —— 149
4.6.2	Convex/concave flutter domain: smooth points α^2 — 150
4.7	Parametric optimization of circulatory systems —— 154
4.7.1	Example: optimization of Ziegler's pendulum —— 155
4.7.2	A nonsmooth and nonconvex optimization problem —— 157
4.7.3	The gradient of the critical load —— 158
4.7.4	An infinite gradient at the crossing of the eigencurves —— 159
4.7.5	Improving variations and necessary conditions for optimality in the case
	where the eigencurves cross —— 159
5	Influence of structure of forces on stability —— 162
5.1	Undamped potential systems —— 163
5.1.1	Lagrange's theorem and Poincaré instability degree —— 163
5.1.2	Rayleigh's theorem on movement of eigenvalues —— 164
5.1.3	Steady-state bifurcation —— 164
5.2	Damped potential systems —— 164
5.2.1	Overdamped and heavily damped systems —— 165
5.2.2	Self-stable and heavily-damped TMS bicycle —— 169
5.2.3	Indefinitely damped systems —— 178
5.3	Undamped gyroscopic systems —— 184
5.3.1	Extension of Rayleigh's theorem —— 184
5.3.2	Criteria of gyroscopic stabilization —— 185
5.4	Damped gyroscopic systems —— 186
5.4.1	Kelvin–Tait–Chetaev theorem —— 186
5.5	Circulatory systems with and without velocity-dependent forces —— 187

5.5.1	Merkin's theorem and Bulatovic's flutter condition —— 189
5.5.2	Bottema-Lakhadanov-Karapetyan theorem —— 189
5.5.3	Stabilizing and destabilizing damping configurations —— 190
6	Dissipation-induced instabilities —— 194
6.1	Crandall's gyropendulum —— 194
6.1.1	Conservative gyroscopic stabilization and its destruction by stationary
	damping —— 195
6.1.2	Singular threshold of the nonconservative gyroscopic
	stabilization —— 196
6.1.3	Imperfect Krein collision and exchange of instability between negative
	and positive energy modes —— 197
6.2	Gyroscopic stabilization of nonconservative systems —— 199
6.2.1	The case of $m = 2$ degrees of freedom — 200
6.2.2	The case of arbitrary even m —— 207
6.3	Near-Hamiltonian systems —— 211
6.4	Gyroscopic and circulatory systems as limits of dissipative
	systems —— 213
7	Nonself-adjoint boundary eigenvalue problems for differential operators
	and operator matrices dependent on parameters —— 222
7.1	Adjoint boundary eigenvalue problems —— 224
7.2	Perturbation of eigenvalues —— 226
7.2.1	Semisimple eigenvalues —— 227
7.2.2	Multiple eigenvalues with the Keldysh chain —— 229
7.2.3	Higher order perturbation terms for double nonderogatory
	eigenvalues —— 231
7.2.4	Degenerate splitting of double nonderogatory eigenvalues —— 233
7.3	Example: a rotating circular string with an elastic restraint —— 234
7.4	Example: the Herrmann-Smith paradox —— 239
7.4.1	Formulation of the problem —— 239
7.4.2	Stationary flutter domain and mobile divergence region —— 242
7.4.3	Sensitivity of the critical flutter load to the redistribution of the elasticity modulus —— 244
7.5	Example: Beck's column loaded by a partially follower force —— 245
7.5.1	The stability-divergence boundary (point A) —— 247
7.5.2	The flutter threshold of Beck's column (point C) — 248
7.5.3	The singularity 0^2 on the stability boundary (point B) — 252
8	The destabilization paradox in continuous circulatory systems —— 255
8.1	Movement of eigenvalues under a velocity-dependent
	perturbation —— 258

8.1.1	Generalized boundary eigenvalue problem —— 259
8.1.2	Variation of parameters that is transversal to the stability
	boundary —— 261
8.1.3	Variation of parameters that is tangential to the stability
	boundary —— 262
8.1.4	Transfer of instability between modes —— 264
8.1.5	Drop in the critical frequency —— 266
8.2	Singular threshold of the flutter instability —— 267
8.2.1	Drop in the critical flutter load —— 267
8.2.2	The "no drop" condition and the tangent cone to the domain of
	asymptotic stability —— 268
8.3	Example: dissipation-induced instability of Beck's column —— 271
8.3.1	Beck's column without damping —— 272
8.3.2	Beck's column with Kelvin–Voigt and viscous damping —— 273
8.3.3	Viscoelastic Beck's column with a dash-pot —— 278
8.3.4	Ziegler's pendulum with a dash-pot —— 281
8.4	Application to finite-dimensional systems —— 283
8.4.1	The destabilization paradox in Ziegler's pendulum —— 284
8.5	Experimental detection of the Ziegler-Bottema destabilization
	paradox —— 288
8.5.1	The destabilizing effect of external damping —— 288
8.5.2	Ziegler-Bottema paradox due to vanishing external damping —— 290
8.5.3	Ziegler-Bottema paradox for the Pflüger column with external
	damping —— 297
8.5.4	The 'flutter machine': design, realization, and validation —— 301
8.5.5	Experimental results versus theoretical and computational
	predictions —— 307
9	The MHD kinematic mean field α^2 -dynamo —— 314
9.1	Eigenvalue problem for α^2 -dynamo — 314
9.2	Uniform α -profiles generate only nonoscillatory dynamos — 318
9.2.1	Conducting exterior: self-adjointness in a Krein space —— 319
9.2.2	Basis properties of eigenfunctions —— 319
9.2.3	Spectral mesh of eigencurves —— 320
9.2.4	Deformation of the spectral mesh via transition from conducting to
	insulating surrounding —— 322
9.3	Nonhomogeneous α -profiles and the conducting exterior —— 323
9.3.1	$l \ge 0$: definite Krein signature prohibits formation of complex
	eigenvalues —— 324
9.3.2	l = 0: oscillating solutions from the repeated decaying modes with
	mixed Krein signature —— 328

9.3.3	$l = 0$: Fourier components of $\alpha(x)$ determine the unfolding pattern of the spectral mesh —— 332
9.4	Insulating boundary conditions induce unstable oscillations —— 335
9.4.1	l = 0: complex unfolding of double eigenvalues with definite Krein
	signature —— 337
10	Campbell diagrams of gyroscopic continua and subcritical friction-induced
40.4	flutter — 342
10.1	Friction-induced vibrations and sound generation — 342
10.2	Example. Subcritical flutter of a rotating circular string — 345
10.3	Axially symmetric rotor with anisotropic stator — 353
10.3.1	Sensitivity analysis of the Campbell diagram —— 355
10.3.2	MacKay's eigenvalue cones and instability bubbles — 357
10.3.3	Double-coffee-filter singularity near the crossings with definite Krein signature —— 361
10.3.4	Unfolding MacKay's cones with mixed Krein signature — 364
10.3.5	Indefinite damping as a reason for subcritical flutter —— 365
10.3.6	Destabilizing role of circulatory forces —— 368
10.4	Example: eigenvalue surfaces of the rotating circular string —— 371
10.5	How to play a disk brake? —— 375
11	Non-Hermitian perturbation of Hermitian matrices with physical
	applications —— 377
11.1	Eigenvalue movement through a 1 : 1 resonance in complex
	matrices —— 380
11.1.1	Diabolical point (DP): passing of eigenvalues —— 381
11.1.2	Exceptional point (EP): splitting of eigenvalues —— 382
11.2	Eigensurfaces associated with DPs —— 383
11.2.1	Complex perturbation of a Hermitian matrix family —— 384
11.2.2	DP in the spectrum of real symmetric matrices —— 385
11.2.3	How a DP unfolds into the conical wedge of Wallis —— 385
11.2.4	Inflating the diabolical point into an exceptional ring —— 389
11.2.5	Example: flutter instability in granular flow —— 391
11.3	Unfolding conical singularities in crystal optics —— 391
11.3.1	DPs in Hamilton's conical refraction —— 393
11.3.2	Approximation of the dispersion surface near a DP —— 395
11.3.3	Eigensurfaces of absorption- and chirality-dominated crystals —— 396
11.4	Eigensurfaces associated with EPs —— 398
11.5	Perturbation of eigenvectors and Berry phase —— 403
11.5.1	Hermitian case: geometric phase around a DP —— 403
11.5.2	Non-Hermitian case: geometric phase around an EP —— 405
11.5.3	Geometric phase around an EP in a microwave cavity —— 409

12	Double-diffusive instabilities in hydro- and magnetohydrodynamics — 412
12.1	Standard, azimuthal, and helical magnetorotational instability —— 412
12.1.1	Cylindrical Couette–Taylor flow —— 412
12.1.2	Paradox of Velikhov and Chandrasekhar —— 415
12.1.3	Magnetorotational instability in astrophysics and its mechanical
	analogues —— 416
12.1.4	Laboratory experiments with CT-flow in axial, azimuthal, and helical
	magnetic fields —— 418
12.2	Mathematical setting —— 420
12.2.1	Nonlinear equations and a steady state —— 420
12.2.2	Linearization with respect to nonaxisymmetric perturbations —— 422
12.3	Geometrical optics approximation —— 422
12.3.1	Dispersion relation of AMRI —— 425
12.3.2	Dispersion relation of HMRI —— 426
12.3.3	The threshold of the standard MRI —— 428
12.3.4	Singularities and the Velikhov–Chandrasekhar paradox —— 430
12.3.5	The singular threshold of the HMRI and connection of HMRI and SMRI
	through a spectral exceptional point for magnetic Rossby number
	Rb = −1 433
12.4	Extending the range of HMRI/AMRI to Keplerian flows with arbitrary Rb —— 438
12.4.1	Inductionless approximation —— 440
12.4.1	Extremal properties of the critical hydrodynamic Rossby number —— 440
12.4.2	Continuation of the Liu limits to arbitrary Rb —— 442
12.4.4	Scaling law of the inductionless MRI —— 444
12.4.5	Growth rates of HMRI and AMRI and the critical Reynolds
12.7.5	number —— 444
12.4.6	HMRI and AMRI as magnetically destabilized inertial waves —— 446
12.4.7	AMRI as a dissipation-induced instability of Chandrasekhar's
	equipartition solution —— 448
12.4.8	Transition from AMRI to the Tayler instability —— 450
12.5	AMRI as a double-diffusive instability —— 452
12.5.1	G-Hamiltonian structure of the diffusionless AMRI —— 453
12.5.2	Krein signature and splitting of double eigenvalues with Jordan
	block — 455
12.5.3	Neutral stability curves —— 456
12.5.4	The Krein collision at the linear Hamilton–Hopf bifurcation
	threshold —— 458
12.5.5	Dissipative perturbation of simple imaginary eigenvalues —— 460
12.5.6	Weak ohmic diffusion destabilizes positive energy waves at low
	Pm —— 461

XX — Contents

12.5.7 Diffusionless and double-diffusive criteria are connected at Pm = 1 — 462
 12.5.8 Double-diffusive instability at Pm ≠ 1 and arbitrary Re and Rm — 463
 12.6 Concluding remarks — 473

Bibliography —— 479

Index ---- 519