

Contents

Foreword *xiii*

1	New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis <i>1</i>
	<i>Alain Roucoux and Karine Philippot</i>
1.1	Nanocatalysis: Position, Interests, and Perspectives <i>1</i>
1.2	Metal Nanoparticles: What Is New? <i>4</i>
1.3	Conclusions and Perspectives <i>8</i>
	References <i>9</i>
2	Introduction to Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts <i>13</i>
	<i>Alexey S. Galushko, Alexey S. Kashin, Dmitry B. Eremin, Mikhail V. Polynski, Evgeniy O. Pentsak, Victor M. Chernyshev, and Valentine P. Ananikov</i>
2.1	Introduction <i>13</i>
2.2	Dynamic Catalysis <i>14</i>
2.3	Interface Between Molecular and Heterogeneous Catalysts <i>17</i>
2.3.1	Direct Observation of Nanoparticle Evolution by Electron Microscopy <i>17</i>
2.3.2	Through the Interface – Detection of Molecular Species by Mass Spectrometry <i>19</i>
2.3.3	Pervasiveness of Nanoparticles and the Problem of Catalytic Contamination <i>22</i>
2.3.4	Computational Modeling of Dynamic Catalytic Systems <i>24</i>
2.3.4.1	Equilibrium of Leaching and Recapture <i>24</i>
2.3.4.2	Modeling Leaching, Recapture, and Transformations in Solution <i>25</i>
2.3.5	Nanoparticle Catalysis in Solvent-Free and Solid-State Organic Reactions <i>27</i>
2.3.6	Applications of the Mercury Test and Other Poisoning Techniques in the Nanoparticle Catalysis Studies <i>30</i>
2.3.6.1	Catalyst Poisoning Techniques and Typical Poisons <i>30</i>
2.3.6.2	Mercury Test <i>31</i>

2.3.6.3	Fundamental Limitations of the Catalyst Poisoning Techniques for Dynamic Systems	33
2.4	Summary and Conclusions	34
	References	36

Part I Nanoparticles in Solution 43

3 Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis 45

Audrey Denicourt-Nowicki, Natalia Mordvinova, and Alain Roucoux

3.1	Introduction	45
3.2	Protection by Ligands	46
3.2.1	Hydrogenation Reactions	46
3.2.1.1	Phosphorous Ligands	46
3.2.1.2	Nitrogenated Ligands	47
3.2.1.3	Carbon Ligands	49
3.2.2	Suzuki–Miyaura Coupling Reactions	50
3.2.2.1	Nitrogenated Ligands	50
3.2.2.2	Carbonaceous and Phosphorous Ligands	51
3.3	Stabilization by Surfactants	51
3.3.1	Hydrogenation Reactions	52
3.3.2	Oxidation Reactions	56
3.3.3	Other Reactions	57
3.4	Stabilization by Polymers	58
3.4.1	Hydrogenation Reactions	58
3.4.2	Carbon–Carbon Coupling Reactions	64
3.4.3	Oxidation Reactions	66
3.5	Conclusions and Perspectives	67
	References	68

4 Organometallic Metal Nanoparticles for Catalysis 73

M. Rosa Axet and Karine Philippot

4.1	Introduction	73
4.2	Interests of the Organometallic Approach to Study Stabilizer Effect on Metal Surface Properties	74
4.3	Application of Organometallic Nanoparticles as Catalysts for Hydrogenation Reactions	78
4.3.1	Metal Nanoparticles Stabilized with Phosphorus Ligands	78
4.3.2	Metal Nanoparticles Stabilized with N-Heterocyclic Carbenes	80
4.3.3	Metal Nanoparticles Stabilized with Zwitterionic Ligands	82
4.3.4	Metal Nanoparticles Stabilized with Fullerenes	82
4.3.5	Metal Nanoparticles Stabilized with Carboxylic Acids	84
4.3.6	Metal Nanoparticles Stabilized with Miscellaneous Ligands	86
4.3.7	Bimetallic Nanoparticles	88

4.3.8	Supported Nanoparticles	90
4.4	Conclusions	94
	References	95
5	Metal Nanoparticles in Polyols: Bottom-up and Top-down Syntheses and Catalytic Applications	99
	<i>Trung Dang-Bao, Isabelle Favier, and Montserrat Gómez</i>	
5.1	Introduction	99
5.2	Bottom-up Approach: Colloidal Synthesis in Polyols	100
5.2.1	Ethylene Glycol and Poly(ethylene glycol)	100
5.2.2	Glycerol	105
5.2.3	Carbohydrates	108
5.3	Top-down Approach: Sputtering in Polyols	113
5.4	Summary and Conclusions	117
	Acknowledgments	118
	References	118
6	Catalytic Properties of Metal Nanoparticles Confined in Ionic Liquids	123
	<i>Muhammad I. Qadir, Nathália M. Simon, and Jairton Dupont</i>	
6.1	Introduction	123
6.2	Stabilization of Metal Nanoparticles in ILs	124
6.3	Synthesis of Soluble Metal Nanoparticles in ILs	125
6.4	Catalytic Application of NPs in ILs	126
6.4.1	Catalytic Hydrogenation of Aromatic Compounds	127
6.4.2	Coupling Reactions in ILs	130
6.4.3	Hydroformylation in ILs	132
6.4.4	Fischer–Tropsch Synthesis in ILs	133
6.4.5	Catalytic Carbon Dioxide Hydrogenation in ILs	133
6.5	Conclusions	134
	Acknowledgments	135
	References	135
	Part II Supported Nanoparticles	139
7	Nanocellulose in Catalysis: A Renewable Support Toward Enhanced Nanocatalysis	141
	<i>Tony Jin and Audrey Moores</i>	
7.1	Introduction	141
7.2	Nanocellulose-Based Catalyst Design and Synthesis	143
7.2.1	Synthesis of Suspended, CNC-Based Nanocatalysts	144
7.2.1.1	Unmodified CNCs as a Support for Metal NPs	144
7.2.1.2	Functionalized CNCs as a Support for Metal NPs	145
7.2.2	Nanocellulose-Based Solid Supports for Metal NPs	146
7.2.2.1	CNC-Embedded Supports	146

7.2.2.2	Functionalized CNFs as a Support for Metal NPs	147
7.2.2.3	Use of CNCs as a Source for Carbon Supports	147
7.3	Organic Transformations Catalyzed by Metal NP/nanocellulose Hybrids	148
7.3.1	C–C Coupling Reactions	148
7.3.2	Reduction Reactions	151
7.4	Conclusions	154
	References	154
8	Magnetically Recoverable Nanoparticle Catalysts	159
	<i>Liane M. Rossi, Camila P. Ferraz, Jhonatan L. Fiorio, and Lucas L. R. Vono</i>	
8.1	Introduction	159
8.2	Magnetic Support Material	161
8.2.1	Magnetite Coated with Silica	163
8.2.2	Magnetite Coated with Ceria, Titania, and Other Oxides	165
8.2.3	Magnetite Coated with Carbon-Based Materials	166
8.3	Preparation of Magnetically Recoverable Metal Nanoparticle Catalysts	167
8.3.1	Immobilization of Metal Precursors Before Reduction	167
8.3.2	Decomposition of Organometallic Precursors	170
8.3.3	Immobilization of Colloidal Nanoparticles	172
8.3.4	Influence of Ligands on Catalytic Properties	173
8.4	Summary and Conclusions	176
	References	176
9	Synthesis of MOF-Supported Nanoparticles and Their Interest in Catalysis	183
	<i>Guowu Zhan and Hua C. Zeng</i>	
9.1	Introduction	183
9.2	General Synthetic Methodologies	185
9.2.1	Catalytic Properties of Metal Nanoparticles	185
9.2.2	Synthetic Strategies of Metal Nanoparticles	187
9.2.2.1	Wet Chemical Reduction Method	187
9.2.2.2	Metal Vapor Condensation/Deposition Method	187
9.2.2.3	Electrochemical Method	188
9.2.2.4	Biosynthesis Method	188
9.2.3	Catalytic Activity and Catalytic Sites of MOFs	188
9.2.4	Porosity of MOFs for Catalysis Applications	189
9.2.5	Synthetic Strategies of MOFs	190
9.2.5.1	Electrochemical Method	191
9.2.5.2	Sonochemical Method	191
9.2.5.3	Microwave Irradiation Method	192
9.2.5.4	Mechanochemical Method	192
9.2.5.5	Synthesis of MOFs in Green Solvents	192
9.2.5.6	Microemulsion Method	193

9.2.5.7	Transformation from Solid Matters to MOFs	193
9.2.6	Integration Methods of MNPs with MOFs	194
9.2.6.1	Preformation of MNPs and Growth of MOFs	195
9.2.6.2	Incorporation of Metal Precursors Followed by in Situ Reduction	197
9.2.6.3	One-pot Integration of MOFs and MNPs	199
9.3	Architectural Designs and Catalytic Applications of MNP/MOF Nanocomposites	200
9.3.1	Zero-Dimensional MNP/MOF Nanocomposites	201
9.3.2	One-Dimensional MNP/MOF Nanocomposites	201
9.3.3	Two-Dimensional MNP/MOF Nanocomposites	203
9.3.4	Three-Dimensional MNP/MOF Nanocomposites	203
9.3.5	Other Representative Structures of MNP/MOF Composites	205
9.3.5.1	Core–Shell/Yolk–Shell Nanostructures	205
9.3.5.2	Sandwich-like Nanostructures	206
9.3.5.3	Formation of Nanoreactors with a Central Cavity	208
9.4	Summary and Conclusions	208
	References	210
10	Silica-Supported Nanoparticles as Heterogeneous Catalysts	215
	<i>Mahak Dhiman, Baljeet Singh, and Vivek Polshettiwar</i>	
10.1	Introduction	215
10.2	Deposition Methods of Metal NPs	216
10.2.1	Wet Impregnation Method	216
10.2.2	Deposition–Precipitation Method	217
10.2.3	Colloidal Immobilization Method	218
10.2.4	Solid-State Grinding Method	219
10.2.5	Postsynthetic Grafting Method	220
10.3	Application of Silica-Supported NPs in Catalysis	221
10.3.1	Oxidation Reactions	221
10.3.1.1	CO Oxidation	221
10.3.1.2	Alcohol Oxidation	222
10.3.1.3	Hydrolysis of Silane	224
10.3.2	Hydrogenation Reactions	226
10.3.3	Carbon–Carbon (C–C) Coupling Reactions	230
10.4	Conclusion	234
	References	235
	Part III Application	239
11	CO₂ Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts: Opportunities and Challenges	241
	<i>Qiming Sun, Zhenhua Zhang, and Ning Yan</i>	
11.1	Introduction	241

11.2	CO ₂ Hydrogenation into Formic Acid	242
11.3	CO ₂ Hydrogenation to Methanol	247
11.4	CO ₂ Hydrogenation to Dimethyl Ether	250
11.5	Perspectives and Conclusion	252
	Acknowledgment	253
	References	253
12	Rebirth of Ruthenium-Based Nanomaterials for the Hydrogen Evolution Reaction	257
	<i>Nuria Romero, Jordi Creus, Jordi García-Antón, Roger Bofill, and Xavier Sala</i>	
12.1	Introduction	257
12.2	Relevant Figures of Merit	258
12.3	Factors Ruling the Performance of Ru-Based NPs in HER Electrocatalysis	261
12.3.1	Surface Composition	262
12.3.2	Phase Structure and Degree of Crystallinity	265
12.3.3	Influence of the C Matrix or the C-Based Support	266
12.3.4	Influence of Heteroatoms	270
12.3.4.1	Phosphorous	270
12.3.4.2	Metals and Semimetals	272
12.4	Factors Ruling the Performance of Ru-Based NPs in HER Photocatalysis	272
12.5	Summary and Conclusions	274
	Acknowledgments	275
	References	275
13	Nanocatalytic Architecture for the Selective Dehydrogenation of Formic Acid	279
	<i>Ismail B. Baguc, Gulsah S. Kanberoglu, Mehmet Yurderi, Ahmet Bulut, Metin Celebi, Murat Kaya, and Mehmet Zahmakiran</i>	
13.1	Introduction	279
13.2	Monometallic Palladium-Based Nanocatalysts	282
13.3	Bimetallic Palladium-Based Nanocatalysts	286
13.3.1	Bimetallic Pd-Containing Nanocatalysts in the Physical Mixture Form	286
13.3.2	Bimetallic Pd-Containing Nanocatalysts in the Alloy Structure	287
13.3.3	Bimetallic Pd-Containing Nanocatalysts in the Core@Shell Structure	291
13.3.4	Trimetallic Pd-Containing Nanocatalysts	294
13.3.5	Other Pd-Free Nanocatalysts	297
13.4	Summary and Conclusions	301
	Acknowledgments	302
	References	302

Part IV Activation and Theory 307

14 Magnetically Induced Nanocatalysis for Intermittent Energy Storage: Review of the Current Status and Prospects 309
Julien Marbaix, Nicolas Mille, Julian Carrey, Katerina Soulantica, and Bruno Chaudret

14.1 Introduction 309

14.2 General Context and Historical Aspects 310

14.3 Characteristics of the Nanocatalysts Used in Magnetic Hyperthermia 312

14.3.1 Metal Oxide Nanomaterials 312

14.3.2 Iron (0) Nanoparticles 312

14.3.3 Iron Carbide Fe(C) Nanomaterials 312

14.3.4 Bimetallic FeNi Nanoparticles 313

14.3.5 Bimetallic FeCo Nanoparticles 313

14.3.6 CoNi Nanoparticles 314

14.4 Catalytic Applications in Liquid Solution and Gas Phase 314

14.4.1 Gas-Phase Catalysis 314

14.4.1.1 Catalysis Activated by Magnetically Heated Micro- and Macroscaled Materials 314

14.4.1.2 Catalysis Activated by Magnetic Heating of Nanoparticles 316

14.4.2 Catalytic Reactions in Solution 318

14.5 Perspectives 322

14.5.1 Stability of the Catalytic Bed During Catalysis by Magnetic Heating 322

14.5.2 Thermal Management and Process Chemistry Using Magnetic Heating for Catalytic Applications 322

14.6 Perspective of the Integration for Renewable Energy Use 323

14.6.1 Interest of Power to Gas and Catalysis Using Magnetic Heating for Renewable Energy Use 323

14.6.2 Energy Efficiency and Environmental Considerations of Catalysis by Magnetic Heating 324

14.7 Conclusion 326

References 327

15 Sabatier Principle and Surface Properties of Small Ruthenium Nanoparticles and Clusters: Case Studies 331
Iker del Rosal and Romuald Poteau

15.1 Introduction 331

15.2 C–H Activation and H/D Isotopic Exchange in Amino Acids and Derivatives 333

15.2.1 Reference Activation and Dissociation Energies 333

15.2.2 H/D Exchange Mechanism 334

15.2.3 Bare Cluster 336

15.2.4 $\text{Ru}_{13}\text{D}_{19}$ 338

15.2.5 $\text{Ru}_{13}\text{D}_n, n = 6\text{--}17$ 338

15.2.6	Short Discussion	338
15.3	Hydrogen Evolution Reaction	340
15.3.1	Introduction	340
15.3.2	4-Phenylpyridine-Protected RuNPs	341
15.3.3	Optimal Ligands for the HER?	344
15.4	Summary	346
15.5	Computational Details	347
	Acknowledgments	348
	References	348

Index	353
--------------	-----