Contents

Chapter 1

Preface — VII
Acknowledgments IX
List of illustrations —— XIX
Introduction —— XXIII

PART A: Bearings and optimally applying lubricant

Examining rolling element bearings and traditional lubrication

Making	the case for upgrading —— 5
1.1	Management digest 5
1.2	What causes lubricants to degrade —— 5
1.3	Cost-justifying upgrades —— 6
Chapter	2
Fundame	entals of rolling element bearings and lubricant application —— 9
2.1	Management digest 9
2.1.1	Pumps used as examples —— 9
2.2	Failure distribution —— 14
2.2.1	Pump failure distribution —— 14
2.2.2	Causes of bearing failures —— 15
2.2.3	Employee motivation matters —— 16
2.2.4	Plant size is not a factor —— 16
2.2.5	Reliability-focus versus repair-focus —— 16
2.3	Even elusive failures have causes —— 17
2.3.1	True keys to asset performance —— 19
2.4	Only two root causes of failure exist —— 19
2.4.1	Repeat failures —— 19
2.4.2	Bearing checklist 20
2.5	What to upgrade in process pump bearing housings —— 22
2.5.1	Generics tell the story —— 22
2.5.2	Black oil —— 23
2.6	"FRETT" - force, reactive environment, time, temperature 24
2.6.1	Bearing housing protector shortcomings —— 24
2.7	DN-number points to oil level preferences in bearing housings 24

2.7.1	Oil rings, general —— 24
2.7.2	Bearing and shaft velocity constraints — 26
2.7.3	Oil levels in bearing housings with different size bearings — 27
2.8	Oil rings have serious limitations — 29
2.8.1	More on test stand versus field experience — 29
2.9	DN number concerns re-emphasized and summarized —— 30
2.9.1	Shaft horizontality and oil level — 31
2.10	Constant level lubricators — 32
2.10.1	Making informed choices —— 34
2.10.2	Why use only pressure-balanced constant level lubricators —— 34
2.10.3	Disseminating information relating to lubricators —— 35
2.11	Needed: a better choice than oil rings and constant level
	lubricators —— 36
2.11.1	Rebuilding and upgrading are urgently needed 38
2.11.2	Test the pump rebuild shop's lubrication knowledge —— 38
2.12	Why avoid low-cost lubricants and lube delivery methods — 39
2.12.1	Experience-based rankings for general guidance —— 40
2.13	Understanding elusive bearing lubrication issues —— 40
2.13.1	Bearing housings with or without oil rings — 42
2.13.2	Attempts to improve on troublesome oil ring lubrication —— 42
2.14	Black oil and bearing protector seals —— 43
2.14.1	The story of "black oil" in pump bearing housings —— 43
2.14.2	More on the issue of darkened oil — 44
2.14.3	Oil level and oil application concerns must be addressed —— 45
2.15	Needed: a better choice than oil rings —— 45
2.15.1	Contemplating ideal lube applications —— 46
2.15.2	Accountability —— 47
2.15.3	Oil mist provides more than just lubrication — 48
2.15.4	Highlights and summary – 25 lubrication-related issues —— 48
Chapter 3	
General ap	plicability ranges for oils and greases —— 55
3.1	Management digest —— 55
3.2	Oil lubrication categories — 55
3.2.1	Synthetic lubricants —— 55
3.2.2	Where synthetic lubes become important problem solvers —— 56
Chapter 4	
Grease lub	rication —— 59
4.1	Management digest — 59
4.1.1	Grease relubrication intervals —— 60
4.1.2	Shields versus no shields in electric motor bearings — 61

Cha	ter 5
-----	-------

Examini	ng reliability-compromised process pumps —— 67
5.1	Management digest — 67
5.1.1	Revisiting "dn" —— 67
5.1.2	Vendor response — 68
5.1.3	Prior art considered —— 70
5.2	Why pump users should request lube delivery upgrades —— 72
5.2.1	Slow progress in obtaining lube delivery upgrades — 74
5.2.2	The gear pump meeting —— 75
5.2.3	Pursuing regenerative pumps —— 76
5.2.4	The 26 pump lube improvement opportunity —— 76
5.2.5	Implementing an immediate upgrade in the Western
	United States —— 78

Part B: Fundamentals of oil mist technology

How equipment outdoor preservation later becomes full standby protection

Chapter 6

6.3.12

Oil mist tec	hnology and its role in optimally protecting standby (standstill)
equipment -	 85
6.1	Management digest —— 85

6.2	Brief overview —— 85
6.2.1	Coalescing action —— 88
6.2.2	Lubrication volume and reclassifier sizes — 90
6.3	Oil mist technology and its role in optimally protecting
	equipment —— 92
6.3.1	"Mothballing" and how it works 92
6.3.2	No downsides, only advantages —— 93
6.3.3	Fifty years of oil mist lubrication and why oil mist excels —— 98
6.3.4	Primary advantages over conventional lubrication summarized —— 100
6.3.5	Closed oil mist systems —— 100
6.3.6	Operational parameters and simplified parts list —— 103
6.3.7	Oil mist for plain bearings — 104
6.3.8	Temperature limits for oil mist lubrication —— 105
6.3.9	Hot bearings — 106
6.3.10	Old-style open- and new-style closed-oil mist systems —— 107
6.3.11	Quality of air needed for oil mist —— 110

Modern bearing housing protector seals used with oil mist —— 111

Chapter 7	
Oil mist his	tory and reliability experience —— 115
7.1	Management digest —— 115
7.2	Scope of overview —— 115
7.3	Why oil mist is a mature technology —— 115
7.3.1	Few maintenance tasks with oil mist —— 117
7.4	Relating oil mist experiences —— 117
7.5	Case histories: Oil mist application beyond process pumps —— 121
7.5.1	Northeast oil refinery – a 2018 experience involving a four-cell cooling
	tower —— 121
7.5.2	Case history: rapid payback from modern oil mist systems
	at an oil refinery in Texas —— 124
7.5.3	Updates always confirm earlier findings —— 125
7.5.4	Fewer shutdowns on record —— 126
7.5.5	What can shut down an oil mist system? —— 127
7.5.6	Installed spare modules (mixing chamber reservoir) options —— 128
7.5.7	Thoughtful layout saves money —— 128
7.6	Warehoused spares — 129
7.7	Oil mist is the ultimate filter —— 129
7.8	Why oil mist terminations with low melting point alloys can be fire
	monitors —— 130
7.9	Using and supervising your own workforces to implement
	large-scale oil mist systems —— 131
Dart C. Eu	Ill equipment standstill/standby protection
rait C. Fu	in equipment standstill/ standby protection
Chapter 8	
-	uipment storage and preservation yards —— 135
8.1	Management digest —— 135
8.2	Overview and principles of storage yards —— 135
8.3	Modifying new equipment upon arrival at a storage yard —— 135
8.4	Preservation statistics and cost data —— 140
8.5	Preview of alternative outdoor storage protection methods —— 143
0.5	Treview of alternative outdoor storage protection methods—— 143
Chapter 9	
•	stection use often followed by permanent installation —— 147
9.1	Management digest —— 147
9.1.1	Important dual purpose of oil mist equipment —— 147
9.2	N2 blanketing and/or nitrogen sweeping — 148
9.3	Oil mist blanketing and/or oil mist sweeping —— 149
9.4	Oil mist intrusion into electric motors —— 150

Chapter 10	
Why storag	e preservation as an afterthought will fail —— 153
10.1	Management digest —— 153
10.2	When it is too late for storage preservation —— 153
10.2.1	How degradation progresses —— 153
10.3	The flushing option —— 154
Chapter 11	
•	est available technology —— 157
11.1	Management digest — 157
11.2	Questions on funding — 157
11.3	Costs for small outdoor storage yard using a pre-owned OMG —— 158
11.4	Costs for future large outdoor storage yards with factory-
	new OMGs —— 160
11.5	Budgeting oil mist preservation — 161
11.6	Why context matters —— 161
11.7	Thorough cost justifications require study of statistical
	information —— 162
11.8	Summary of findings and how data are validated —— 163
Chapter 12	
	als be bypassed? —— 171
12.1	Management digest —— 171
12.2	No field trials needed for oil mist —— 171
12.3	Field trials for conventional storage preservation — 171
12.4	Definition of deliverables —— 172
Chapter 13	
Vapor-relate	ed and old-style conventional storage protection methods —— 173
13.1	Management digest —— 173
13.2	Examining vapor phase and vapor space inhibitors — 173
13.3	Opting for conventional storage preservation and selecting
	products —— 174
13.4	Properties of product A —— 174
13.5	Properties of product B —— 175
13.6	Properties of product C —— 176
Chapter 14	
Machine-sp	ecific storage preservation steps —— 179
14.1	Management digest —— 179
14.2	Small motors and similar machines —— 179
14.2.1	Relating bearing construction to "leave alone" strategies — 180

14.3	Large electric motors —— 181
14.4	Steam turbines —— 181
14.5	Gas turbines and hot gas turboexpanders —— 182
14.6	Gearboxes — 182
14.7	Centrifugal (dynamic) plant air compressors and blowers —— 182
14.8	Lube and seal oil consoles and circulating oil systems —— 183
14.9	Reciprocating compressors —— 183
14.10	Hydraulic units —— 183
Chapter 15	
Strategy for	short-term equipment storage preservation —— 185
15.1	Management digest —— 185
15.2	Shaft rotation requirements (applicable to short-term equipment storage) —— 185
15.2.1	Visual inspection (refers only to short-term equipment storage) — 186
15.2.2	Draining of condensate (for short-term equipment storage) — 186
15.3	Bearings (for short-term equipment storage) —— 186
15.4	Electric motors (for short-term equipment storage) —— 186
15.5	Steam turbines (for short-term equipment storage) — 186
15.6	Gears (for short-term equipment storage) —— 187
15.7	Compressors (for short-term equipment storage) —— 187
15.8	Using oil mist for short-term equipment preservation —— 187
15.8.1	Other considerations for short-term equipment storage —— 188
15.8.2	Storage preservation mentioned in industry standards —— 188
15.8.3	Protection of mechanical seal components in nonoperating
	fluid machines — 190
15.8.4	Pumps and fluid machines where no fluid is present —— 190
15.8.5	Pumps and fluid machines where fluid is present —— 191
15.9	Case history involving EPC contractor —— 191
Chapter 16	
Preparing s	tored equipment for re-commissioning (re-start after long
periods of p	reservation) —— 193
16.1	Management digest —— 193
16.2	Steps before removing machine —— 193
16.2.1	The process pump example —— 194
16.2.2	Inert gas purge versus the oil mist preference —— 194

Chapter :	17
-----------	----

Summary and conclusions —— 195

- 17.1 Management digest 195
- 17.2 Other points worth recalling 195
- 17.3 Taking reliability engineering up a notch 196
- 17.4 Be mindful of the bottom line 197

Appendix I: Damage terms, damage prevention, and the corrosion

mechanism —— 199

Appendix II: A new development: "ADIOS" --- 207

Appendix III: Jobsite receiving and protection —— 213

References ---- 221

Index — 225

About the author --- 231