Contents

Preface — V

List	of C	Contri	buti	ing A	luthors	— x	l
------	------	--------	------	-------	---------	-----	---

V. Bes	chkov and D. Yankov
1	Chemical engineering methods in downstream processing in
	biotechnology 1
1.1	Introduction —— 1
1.2	Main and specific processes for product extraction and recovery
	in biotechnology —— 4
1.2.1	Biomass separation —— 4
1.2.2	Target product extraction from disrupted biomass —— 6
1.2.3	Product recovery from the broth. Crude separation and
	concentration — 7
1.2.4	Crystallization and drying —— 10
1.2.5	Emerging bioseparation processes —— 11
1.2.6	Separation by chromatography —— 12
1.3	Conclusions —— 12
	References —— 12
Fiona	Mary Antony, Dharm Pal and Kailas Wasewar
2	Separation of bio-products by liquid-liquid extraction —— 17
2.1	Introduction —— 17
2.2	Separation and purification processes in biorefinery — 18
2.3	Liquid-liquid extraction —— 19
2.4	Types of liquid-liquid extraction —— 21
2.4.1	Conventional extraction —— 21
2.4.2	Fractional extraction —— 21
2.4.3	Dissociative extraction —— 22
2.4.4	pH-swing extraction —— 22
2.4.5	Reactive extraction —— 22
2.4.6	Temperature-swing extraction —— 22
2.4.7	Membrane based solvent extraction — 22
2.4.8	Special extraction techniques —— 23
2.5	Applications of L-L extraction in bioprocess technology — 24
2.6	Equipments for liquid-liquid extraction —— 25
2.7	New approaches —— 26
2.8	Reactive extraction —— 26
2.8.1	Recovery of antibiotics — 30
2.8.2	Recovery of carboxylic acids —— 30

2.8.2

2.8.3	Other fermentation derived products —— 31
2.8.4	Extraction of cellular components and biopolymers —— 31
2.8.5	Biofuels — 31
2.8.6	Platform chemicals —— 32
2.8.7	Biomass hydrolysate components and impurities — 32
2.8.8	Bio-products based on microalgae —— 32
2.9	Regeneration of solvent — 32
2.10	Conclusions — 32
2.10	References — 33
	Kelelelites —— 33
José Co	elho, Paolo Trucillo, Beatriz Nobre, António Figueiredo
Palavra	, Roberta Campardelli and Ernesto Reverchon
3	Extraction and bioprocessing with supercritical fluids —— 41
3.1	Introduction —— 41
3.2	SCFs applications to microalgae —— 44
3.2.1	Microalgae — 44
3.2.2	SFE to microalgae —— 45
3.2.3	SFE to microalgae combine with other methods — 46
3.2.4	Pressurized liquid extraction from microalgae —— 48
3.2.5	Final remarks —— 49
3.3	SuperLip: A novel process for liposome fabrication —— 51
3.3.1	Definition of liposomes —— 51
3.3.2	Use of liposomes —— 51
3.3.3	Liposomes drug release mechanisms —— 51
3.3.4	Liposomes classification —— 52
3.3.5	Liposomes methods of production —— 52
3.3.6	Supercritical assisted liposome formation —— 53
3.3.7	Optimization of operative parameters —— 53
3.3.8	SuperLip liposome-based applications —— 55
3.3.9	Commercialization of the process —— 56
3.3.10	Conclusions — 57
	References — 57
Venko I	N. Beschkov
4	Ion exchange in downstream processing in biotechnology —— 63
4.1	Introduction — 63
4.2	Ion-exchange solvent extraction —— 64
4.3	Ion-exchange resins in downstream processing —— 66
4.3.1	Lactic acid extraction — 66
4.3.2	Lysine recovery by in ion-exchange techniques —— 71
4.3.3	Protein separation by ion-exchange chromatography [72, 73] —— 72
4.J.J	1 Totali Separation by ion-exchange chromatography [72, 73] 72

4.4	Conclusion —— 74		
	References — 74		
Zdravk	a Lazarova, Venko Beschkov and Svetlozar Velizarov		
5	Electro-membrane separations in biotechnology — 79		
5.1	Introduction — 79		
5.2	Examples for product recovery in biotechnology by dialysis		
	membrane extraction —— 80		
5.2.1	Volatile fatty acids (VFA) —— 81		
5.2.2	Lactic acid —— 81		
5.2.3	Aminoacids —— 81		
5.2.4	Inhibitor removal —— 82		
5.2.5	Fuel cell applications —— 82		
5.3	Electrically enhanced crossflow membrane filtration as a		
	separation tool in biotechnology —— 82		
5.3.1	Applications of electro-microfiltration (EMF) —— 84		
5.3.2	Applications of electro-ultrafiltration (EUF) —— 84		
5.3.3	Case study 1: Removal of BSA by MF in AC (alternating current)		
	electric field — 86		
5.3.4	Case study 2: EMF of rabbit albumin —— 89		
	References —— 91		
Dragor	nir Yankov		
6	Aqueous two-phase systems as a tool for bioseparation – emphasis		
	on organic acids —— 95		
6.1	Polymer/polymer ATPS for separation of organic acids —— 97		
6.2	Polymer- salt ATPS in the separation of organic acids —— 105		
6.3	ATPS alcohol-salt for separation of organic acids —— 109		
6.4	ATPS with ionic liquids and deep eutectic solvents for separation		
	of organic acids —— 112		
6.5	Surfactant-based ATPS for organic acids separation —— 116		
6.6	Conclusions —— 119		
	References —— 119		
Konsta	ntza Tonova		
7 Ionic liquid-assisted biphasic systems for downstream process			
	fermentative enzymes and organic acids —— 123		
7.1	Enzyme recovery and purification by ABS with ILs —— 124		
7.1.1	Overview —— 124		
7.1.2	Factors and parameters affecting the partitioning of enzymes in		
	ABS with ILs —— 137		
7.2	IL-assisted recovery of fermentatively derived organic acids —— 140		

٧	·	r	_		٠	_	_	+-	
•		L	u	н	L	u	п	ts	١

7.2.1	Overview —— 140
7.2.2	Factors and parameters affecting the extraction of organic acids by ILs and unraveling the extraction mechanism —— 142
7.2.3	Procedures to enhance the extraction efficiency and to intensify the extraction process —— 144
7.3	Concluding remarks and challenges of the experimental blanks —— 146
	List of abbreviations —— 149
	References —— 149
Katalin	Belafi-Bako, Gabor Toth and Nandor Nemestothy
8	Application of polymer membranes in downstream processes —— 155
8.1	Introduction —— 155
8.2	Membrane processes in downstream —— 156
8.2.1	Fundamentals of membrane processes —— 156
8.2.2	Microfiltration, ultrafiltration, nanofiltration — 158
8.2.3	Pervaporation —— 159
8.2.4	Dialysis —— 160
8.2.5	Electrodialysis — 160
8.3	Conclusions —— 161
	References —— 161

Index —— 165