

Contents

1	Introduction — 1
1.1	Two-Dimensional versus Three-Dimensional Structures — 1
1.1.1	Two-Dimensional Structures in Early History of Organic Chemistry — 1
1.1.2	Three-Dimensional Structures After Beginning of Stereochemistry — 2
1.1.3	Arbitrary Switching Between 2D-Based and 3D-Based Concepts — 4
1.2	Problematic Methodology for Categorizing Isomers and Stereoisomers — 6
1.2.1	Same or Different — 6
1.2.2	Dual Definition of Isomers — 7
1.2.3	Positional Isomers as a Kind of Constitutional Isomers — 11
1.3	Problematic Methodology for Categorizing Enantiomers and Diastereomers — 12
1.3.1	Enantiomers — 12
1.3.2	Diastereomers — 12
1.3.3	Chirality and Stereogenicity — 18
1.4	Total Misleading Features of the Traditional Terminology on Isomers — 19
1.4.1	Total Misleading Flowcharts — 19
1.4.2	Another Flowchart With Partial Solutions — 20
1.4.3	More Promising Way — 22
1.5	Isomer Numbers — 23
1.5.1	Combinatorial Enumeration as 2D Structures — 23
1.5.2	Importance of the Proligand-Promolecule Model — 24
1.5.3	Combinatorial Enumeration as 3D Structures — 24
1.6	Stereoisograms — 25
1.6.1	Stereoisograms as Diagrammatic Expressions of <i>RS</i> -Stereoisomeric Groups — 25
1.6.2	Theoretical Foundations and Group Hierarchy — 27
1.6.3	Avoidance of Misleading Standpoints of <i>R/S</i> -Stereodescriptors — 27
1.6.4	Avoidance of Misleading Standpoints of <i>pro-R/pro-S</i> -Descriptors — 28
1.6.5	Global Symmetries and Local Symmetries — 28
1.6.6	Enumeration under <i>RS</i> -Stereoisomeric Groups — 32
1.7	Aims of Mathematical Stereochemistry — 32
2	Classification of Isomers — 38
2.1	Equivalence Relationships of Various Levels of Isomerism — 38
2.1.1	Equivalence Relationships and Equivalence Classes — 38
2.1.2	Enantiomers, Stereoisomers, and Isomers — 39

2.1.3	Inequivalence Relationships — 43
2.1.4	Isoskeletons as a Missing Link for Consistent Terminology — 46
2.1.5	Constitutionally-Anisomeric Relationships vs. Constitutionally-Isomeric Relationships — 49
2.2	Revised Flowchart for Categorizing Isomers — 50
2.2.1	Design of a Revised Flowchart for Categorizing Isomers — 50
2.2.2	Illustrative Examples — 51
2.2.3	Restriction of the Domain of Isomerism — 53
2.2.4	Harmonization of 3D-Based Concepts with 2D-Based Concepts — 54
3	Point-Group Symmetry — 58
3.1	Stereoskeletons and the Proligand-Promolecule Model — 58
3.1.1	Configuration and Conformation — 58
3.1.2	The Proligand-Promolecule Model Based on Stereoskeletons — 59
3.2	Point Groups for Characterizing Geometric Symmetry of Molecular Entity — 61
3.2.1	Symmetry Axes and Symmetry Operations — 61
3.2.2	Construction of Point Groups — 64
3.2.3	Subgroups of a Point Group — 66
3.2.4	Maximum Chiral Subgroup of a Point Group — 68
3.2.5	Global and Local Point-Group Symmetries — 69
3.3	Point-Group Symmetries of Various Stereoskeletons — 73
3.3.1	Stereoskeletons of Ligancy 4 — 74
3.3.2	Stereoskeletons of Ligancy 6 — 79
3.3.3	Stereoskeletons of Ligancy 8 — 80
3.3.4	Stereoskeletons Having Two or More Orbita — 81
3.4	Point-Group Symmetries of (Pro)molecules — 84
3.4.1	Derivation of Molecules from a Stereoskeleton via Promolecules — 84
3.4.2	Orbits in Molecules and Promolecules Derived from Stereoskeletons — 85
3.4.3	The SCR Notation — 90
3.4.4	Site Symmetries vs. Coset Representations for Symmetry Notations — 91
4	Sphericities of Orbita and Prochirality — 96
4.1	Sphericities of Orbita — 96
4.1.1	Orbita of Equivalent Proligands — 96
4.1.2	Three Kinds of Sphericities — 98
4.1.3	Chirality Fittingness for Three Modes of Accommodation — 98
4.2	Prochirality — 102
4.2.1	Confusion on the Term ‘Prochirality’ — 102
4.2.2	Prochirality as a Geometric Concept — 104

4.2.3	Enantiospheric Orbit vs. Enantiotopic Relationships — 107
4.2.4	Chirogenic Sites in an Enantiospheric Orbit — 111
4.2.5	Prochirality Concerning Chiral Proligands in Isolation — 116
4.2.6	Global Prochirality and Local Prochirality — 119
5	Foundations of Enumeration Under Point Groups — 125
5.1	Orbits Governed by Coset Representations — 125
5.1.1	Coset Representations — 125
5.1.2	Mark Tables — 128
5.1.3	Multiplicities of Orbits — 130
5.2	Subduction of Coset Representations — 133
5.2.1	Subduced Representations — 133
5.2.2	Unit Subduced Cycle Indices (USCIs) — 138
6	Symmetry-Itemized Enumeration Under Point Groups — 143
6.1	Fujita's USCI Approach — 143
6.1.1	USCI-CFs for Itemized Enumeration — 144
6.1.2	Subduced Cycle Indices for Itemized Enumeration — 151
6.2	The FPM Method of Fujita's USCI Approach — 152
6.2.1	Fixed-Point Vectors (FPVs) and Multiplicity Vectors (MVs) — 152
6.2.2	Fixed-Point Matrices (FPMs) and Isomer-Counting Matrices (ICMs) — 154
6.2.3	Practices of the FPM Method — 156
6.3	The PCI Method of Fujita's USCI Approach — 162
6.3.1	Partial Cycle Indices With Chirality Fittingness (PCI-CFs) — 162
6.3.2	Partial Cycle Indices Without Chirality Fittingness (PCIs) — 163
6.3.3	Practices of the PCI Method — 164
6.4	Other Methods of Fujita's USCI Approach — 178
6.4.1	The Elementary-Superposition Method — 178
6.4.2	The Partial-Superposition Method — 178
6.5	Applications of Fujita's USCI Approach — 178
6.5.1	Enumeration of Flexible Molecules — 178
6.5.2	Enumeration of Molecules Interesting Stereochemically — 179
6.5.3	Enumeration of Inorganic Complexes — 182
6.5.4	Enumeration of Organic Reactions — 183
7	Gross Enumeration Under Point Groups — 186
7.1	Counting Orbits — 186
7.2	Pólya's Theorem of Counting — 187
7.3	Fujita's Proligand Method of Counting — 190
7.3.1	Sphericities of Cycles — 191
7.3.2	Products of Sphericity Indices — 193

7.3.3	Practices of Fujita's Proligand Method — 196
7.3.4	Enumeration of Achiral and Chiral Promolecules — 200
8	Enumeration of Alkanes as 3D Structures — 206
8.1	Surveys With Historical Comments — 206
8.2	Enumeration of Alkyl Ligands as 3D Planted Trees — 208
8.2.1	Enumeration of Methyl Proligands as Planted Promolecules — 208
8.2.2	Recursive Enumeration of Alkyl ligands as Planted Promolecules — 213
8.2.3	Functional Equations for Recursive Enumeration of Alkyl ligands — 216
8.2.4	Achiral Alkyl Ligands and Pairs of Enantiomeric Alkyl Ligands — 220
8.3	Enumeration of Alkyl Ligands as Planted Trees — 221
8.3.1	Alkyl Ligands or Monosubstituted Alkanes as Graphs — 221
8.3.2	3D Structures vs. Graphs for Characterizing Alkyl Ligands or Monosubstituted Alkanes — 224
8.4	Enumeration of Alkanes (3D-Trees) as 3D-Structural Isomers — 226
8.4.1	Alkanes as Centroidal and Bicentroidal 3D-Trees — 226
8.4.2	Enumeration of Centroidal Alkanes (3D-Trees) as 3D-Structural Isomers — 227
8.4.3	Enumeration of Bicentroidal Alkanes (3D-Trees) as 3D-Structural Isomers — 231
8.4.4	Total Enumeration of Alkanes as 3D-Trees — 236
8.5	Enumeration of Alkanes (3D-Trees) as Steric Isomers — 239
8.5.1	Centroidal Alkanes (3D-Trees) as Steric Isomers — 239
8.5.2	Bicentroidal Alkanes (3D-Trees) as Steric Isomers — 239
8.5.3	Total Enumeration of Alkanes (3D-Trees) as Steric Isomers — 241
8.6	Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers — 242
8.6.1	Alkanes as Centroidal and Bicentroidal Trees — 242
8.6.2	Enumeration of Centroidal Alkanes (Trees) as Constitutional Isomers — 242
8.6.3	Enumeration of Bicentroidal Alkanes (Trees) as Constitutional Isomers — 245
8.6.4	Total Enumeration of Alkanes (Trees) as Graphs or Constitutional Isomers — 246
9	Permutation-Group Symmetry — 248
9.1	Historical Comments — 248
9.2	Permutation Groups — 250
9.2.1	Permutation Groups as Subgroups of Symmetric Groups — 250
9.2.2	Permutations vs. Reflections — 251
9.3	RS-Permutation Groups — 254
9.3.1	RS-Permutations and RS-Diastereomeric Relationships — 254

9.3.2	<i>RS</i> -Permutation Groups vs. Point Groups — 255
9.3.3	Formulation of <i>RS</i> -Permutation Groups — 259
9.3.4	Action of <i>RS</i> -Permutation Groups — 261
9.3.5	Misleading Features of the Conventional Terminology — 263
9.4	<i>RS</i> -Permutation Groups for Skeletons of Ligancy 4 — 269
9.4.1	<i>RS</i> -Permutation Group for a Tetrahedral Skeleton — 269
9.4.2	<i>RS</i> -Permutation Group for an Allene Skeleton — 279
9.4.3	<i>RS</i> -Permutation Group for an Ethylene Skeleton — 283
10	Stereoisograms and <i>RS</i>-Stereoisomers — 292
10.1	Stereoisograms as Integrated Diagrammatic Expressions — 292
10.1.1	Elementary Stereoisograms of Skeletons with Position Numbering — 292
10.1.2	Stereoisograms Based on Elementary Stereoisograms — 299
10.2	Enumeration Under <i>RS</i> -Stereoisomeric Groups — 307
10.2.1	Subgroups of the <i>RS</i> -Stereoisomeric Group $C_{3v\hat{a}l}$ — 307
10.2.2	Coset Representations — 310
10.2.3	Mark Table and its Inverse — 311
10.2.4	Subduction for <i>RS</i> -Stereoisomeric Groups — 313
10.2.5	USCI-CFs for <i>RS</i> -Stereoisomeric Groups — 314
10.2.6	SCI-CFs for <i>RS</i> -Stereoisomeric Groups — 317
10.2.7	The PCI Method for <i>RS</i> -Stereoisomeric Groups — 317
10.2.8	Type-Itemized Enumeration by the PCI Method — 322
10.2.9	Gross Enumeration Under <i>RS</i> -Stereoisomeric Groups — 324
10.3	Comparison with Enumeration Under Subgroups — 326
10.3.1	Comparison with Enumeration Under Point Groups — 326
10.3.2	Comparison with Enumeration Under <i>RS</i> -Permutation Groups — 328
10.3.3	Comparison with Enumeration Under Maximum-Chiral Point Subgroups — 331
10.4	<i>RS</i> -Stereoisomers as Intermediate Concepts — 332
11	Stereoisograms for Tetrahedral Derivatives — 335
11.1	<i>RS</i> -Stereoisomeric Group $T_{d\hat{a}l}$ and Elementary Stereoisogram — 335
11.2	Stereoisograms of Five Types for Tetrahedral Derivatives — 337
11.2.1	Type-I Stereoisograms of Tetrahedral Derivatives — 339
11.2.2	Type-II Stereoisograms of Tetrahedral Derivatives — 340
11.2.3	Type-III Stereoisograms of Tetrahedral Derivatives — 340
11.2.4	Type-IV Stereoisograms of Tetrahedral Derivatives — 342
11.2.5	Type-V Stereoisograms of Tetrahedral Derivatives — 342
11.3	Enumeration Under the <i>RS</i> -Stereoisomeric Group $T_{d\hat{a}l}$ — 344
11.3.1	Non-Redundant Set of Subgroups and Five Types of Subgroups — 344
11.3.2	Subduction of Coset Representations — 347

11.3.3	The PCI Method for the <i>RS</i> -Stereoisomeric Group $T_{d\bar{d}\bar{l}}$ — 348
11.3.4	Type-Itemized Enumeration by the PCI Method — 354
11.4	Comparison with Enumeration Under Subsymmetries — 357
11.4.1	Enumeration of Tetrahedral Promolecules Under the Point-Group Symmetry — 357
11.4.2	Enumeration of Tetrahedral Promolecules Under the <i>RS</i> -Permutation-Group Symmetry — 358
11.4.3	Comparison with Enumeration Under Maximum-Chiral Point Subgroups — 361
11.4.4	Confusion Between the Point-Group Symmetry and the <i>RS</i> -Permutation-Group Symmetry — 362
12	Stereoisograms for Allene Derivatives — 365
12.1	<i>RS</i> -Stereoisomeric Group $D_{2d\bar{d}\bar{l}}$ and Elementary Stereoisogram — 365
12.2	Stereoisograms of Five Types for Allene Derivatives — 367
12.2.1	Type-I Stereoisograms of Allene Derivatives — 367
12.2.2	Type-II Stereoisograms of Allene Derivatives — 369
12.2.3	Type-III Stereoisograms of Allene Derivatives — 371
12.2.4	Type-IV Stereoisograms of Allene Derivatives — 374
12.2.5	Type-V Stereoisograms of Allene Derivatives — 375
12.3	Enumeration Under the <i>RS</i> -Stereoisomeric Group $D_{2d\bar{d}\bar{l}}$ — 377
12.3.1	Non-Redundant Set of Subgroups and Five Types of Subgroups — 377
12.3.2	Subduction of Coset Representations — 379
12.3.3	The PCI Method for the <i>RS</i> -Stereoisomeric Group $D_{2d\bar{d}\bar{l}}$ — 380
12.3.4	Type-Itemized Enumeration by the PCI Method — 385
12.4	Comparison with Enumeration Under Subsymmetries — 387
12.4.1	Enumeration of Allene Promolecules Under the Point-Group Symmetry — 387
12.4.2	Enumeration of Allene Promolecules Under the <i>RS</i> -Permutation-Group Symmetry — 388
13	Combined-Permutation Representations (CPRs) — 391
13.1	Chemical Compounds as Graphs vs. as 3D Structures — 391
13.2	CPRs as Computer-Oriented Representations of Point Groups — 392
13.2.1	Coset Representations — 392
13.2.2	Mirror-Permutation Representations — 393
13.2.3	Combined Representations and The Corresponding Groups — 395
13.2.4	Partition into Conjugacy Classes — 396
13.3	Correspondence Between O_h -Skeleltons — 398
13.3.1	Combined-Permutation Groups for O_h -Skeleltons — 398
13.3.2	Isomorphism between Combined-Permutation Groups for O_h -Skeleltons — 399

13.4	Calculation of Cl-CFs — 400
13.4.1	Products of Sphericity Indices — 400
13.4.2	Definition of Cl-CFs — 405
13.4.3	Functions for Calculating Cl-CFs — 406
13.4.4	Practices of Calculation of Cl-CFs — 407
13.5	Combinatorial Enumeration — 409
13.5.1	Generating Functions Derived From Cl-CFs — 409
13.5.2	Selective Calculation of Coefficients of Generating Functions — 411
13.5.3	Merits of the Present Procedure in Enumeration by Fujita's Proligand Method — 415
13.6	Conclusive Remarks on Applicability of Combined-Permutation Representations — 417
13.7	Appendix A — 419
13.8	Appendix B — 423
14	Stereochemical Nomenclature — 426
14.1	Absolute Configuration — 426
14.1.1	Single Pair of Attributes 'Chirality/Achirality' in Modern Stereochemistry — 426
14.1.2	Three Pairs of Attributes in Fujita's Stereoisogram Approach — 428
14.1.3	Three Aspects of Absolute Configuration — 429
14.2	Quadruplets of <i>RS</i> -Stereoisomers as Equivalence Classes — 430
14.2.1	Three Types of Pairwise Relationships in a Quadruplet of <i>RS</i> -Stereoisomers — 430
14.2.2	Formulation of Stereoisograms as Quadruplets of <i>RS</i> -Stereoisomers — 432
14.3	Inner Structures of Promolecules — 432
14.3.1	Inner Structures of <i>RS</i> -Stereogenic Promolecules — 433
14.3.2	Inner Structures of <i>RS</i> -Astereogenic Promolecules — 436
14.4	Assignment of Stereochemical Nomenclature — 439
14.4.1	Single Criterion for Giving <i>RS</i> -Stereodescriptors — 439
14.4.2	<i>RS</i> -Diastereomers: the CIP Priority System — 440
14.4.3	<i>R/S</i> -Stereodescriptors and Stereoisograms — 443
14.4.4	Chirality Faithfulness — 444
14.4.5	Stereochemical Notations for Other Skeletons — 446
15	Pro-<i>RS</i>-Stereogenicity Based on Orbitals — 449
15.1	Prochirality vs. Pro- <i>RS</i> -Stereogenicity — 449
15.1.1	Prochirality as a Geometric Concept — 449
15.1.2	Pro- <i>RS</i> -Stereogenicity as a Stereoisomeric Concept — 450
15.1.3	Prochirality and Pro- <i>RS</i> -Stereogenicity for Tetrahedral Derivatives — 450

15.2	Orbits under <i>RS</i> -Permutation Groups — 452
15.2.1	<i>RS</i> -Tropicity — 452
15.2.2	Pro- <i>RS</i> -Stereogenicity as a Stereoisomeric Concept — 453
15.3	<i>pro-R/pro-S</i> -Descriptors — 455
15.3.1	<i>RS</i> -Diastereotopic Relationships — 455
15.3.2	Single Criterion for Giving <i>pro-R/pro-S</i> -descriptors — 455
15.3.3	Probe Stereoisograms for Assigning <i>pro-R/pro-S</i> -Descriptors — 457
15.3.4	Misleading Interpretation of ‘Prochirality’ in Modern Stereochemistry — 459
15.4	Pro- <i>RS</i> -Stereogenicity Distinct From Prochirality — 460
15.4.1	Simultaneity of Prochirality and Pro- <i>RS</i> -Stereogenicity in a Type-IV Promolecule — 460
15.4.2	Coincidence of Prochirality and Pro- <i>RS</i> -stereogenicity — 463
15.4.3	Prochiral (but Already <i>RS</i> -Stereogenic) Promolecules — 465
15.5	Pro- <i>RS</i> -Stereogenicity for <i>pro-R/pro-S</i> -Descriptors — 466
16	Perspectives — 470
16.1	Enumeration of Highly Symmetric Molecules — 470
16.2	Interaction of Orbitals of Different Kinds — 470
16.3	Correlation Diagrams of Stereoisograms — 471
16.4	Group Hierarchy — 472
16.5	Combined-Permutation Representations (CPRs) and the GAP System — 474
16.6	Non-Rigid Molecules and Conformations — 474
16.7	Interdisciplinary Nature of Mathematical Stereochemistry — 475
16.7.1	Mathematical and Stereochemical Barriers In Practical Levels — 475
16.7.2	Mathematical and Stereochemical Barriers In Conceptual Levels — 476
16.8	Stereochemistry and Stereoisomerism. Theoretical Foundations — 477
16.9	Hints for Further Investigations — 478
Index	485