

Contents

Preface *xiii*

1	Introduction: Carbon Monoxide as Synthon in Organic Synthesis	1
	<i>Bartolo Gabriele</i>	
	References	7
 Part I Carbonylations Promoted by First Row Transition Metal Catalysts <i>13</i>		
2	Cobalt-Catalyzed Carbonylations	15
	<i>Jérôme Volkman and Philippe Kalck</i>	
2.1	Introduction	15
2.2	Carbon Monoxide and Its Surrogates	16
2.3	Hydroformylation of Alkenes	18
2.4	Carbonylation of Alkynes by the Pauson–Khand [2+2+1] Reaction	23
2.5	Carbonylation of Methanol	28
2.6	Carbonylation of Heterocycles	30
2.7	Carbonylation of Alkyl and Aryl Halides	36
2.8	C–H Bond Carbonylations	37
2.9	Miscellaneous Co-Catalyzed Carbonylations	39
2.10	Summary and Conclusions	40
	References	41
3	Nickel-Catalyzed Carbonylations	51
	<i>Debarati Das and Bhalchandra M. Bhanage</i>	
3.1	Introduction	51
3.2	Nickel Halides in Carbonylation Reaction	52
3.3	Ni-Chelates as Precatalysts	56
3.4	Nanoparticles as Active Catalysts	60
3.5	Dinickel Complexes as Catalysts	62

3.6	Ni/AC as a Promising Heterogeneous Catalyst	63
3.7	Use of CO Surrogates with Nickel Catalysts	64
3.7.1	Metal Carbonyls as CO Surrogates	64
3.7.2	Formates as CO Surrogates	67
3.7.3	Acid or Acid Chlorides as CO Surrogates	69
3.8	Other Prominent Roles of Nickel in Carbonylation	73
3.9	Conclusion and Future Outlook	77
	References	78
4	Carbonylations Catalyzed by Other First Row Transition-Metal Catalysts (Manganese, Iron, Copper)	83
	<i>Chong-Liang Li, Hai Wang, and Xiao-Feng Wu</i>	
4.1	Introduction	83
4.2	Synthesis of Ketones	83
4.3	Synthesis of Esters	90
4.4	Synthesis of Amides	95
4.5	Synthesis of Other Products	104
4.6	Summary and Conclusions	110
	References	110
Part II Carbonylations Promoted by Second Row Transition Metal Catalysts 113		
5	Ruthenium-Catalyzed Carbonylations	115
	<i>Heifried Neumann and Rajenahally V. Jagadeesh</i>	
5.1	Introduction	115
5.2	CH Activation of Nitrogen-Containing Arene Derivatives	116
5.3	Ruthenium-Catalyzed Carbonylations of Olefins and Nitroarenes	123
5.3.1	Ruthenium-Catalyzed Hydroformylations	123
5.3.2	Ruthenium-Catalyzed Alkoxy carbonylation of Olefins	126
5.3.3	Carbonylation of Nitroarenes	129
5.4	Ruthenium-Catalyzed Carbonylation of Amines and Alcohols	132
5.5	Ruthenium-Catalyzed Cyclocarbonylations	133
5.6	Ruthenium-Catalyzed Reactions Using Syngas	138
5.6.1	Fischer-Tropsch Synthesis	138
5.6.2	Synthesis of Oxo Products from Syngas	140
5.7	Synthesis of Oxo Products from H ₂ and CO ₂	142
5.8	Conclusions	144
	References	144
6	Rhodium-Catalyzed Carbonylations	149
	<i>Oreste Piccolo and Stefano Paganelli</i>	
6.1	Introduction	149
6.2	Hydroformylation	151

6.2.1	Catalyst Recovery	152
6.2.2	Aqueous Biphasic Hydroformylation	156
6.2.3	Enantioselective Hydroformylation	161
6.2.4	Tandem Hydroformylation	164
6.2.5	Syngas Surrogates	169
6.3	Carbonylation	171
6.4	Some Relevant Patents and Patent Applications (2015–2020)	184
6.4.1	Hydroformylation	184
6.4.2	Preparation of Acetic Acid and Similar Compounds and Derivatives	185
6.4.3	Alcohols	185
6.5	Summary and Conclusions	185
	References	186
7	Palladium(0)-Catalyzed Carbonylations	197
	<i>Jianming Liu, Chengtao Yue, and Fuwei Li</i>	
7.1	Introduction	197
7.2	Palladium(0)-Catalyzed Carbonylative Synthesis of Ester Derivatives	198
7.2.1	Palladium(0)-Catalyzed Carbonylative Synthesis of Ester Derivatives from Aryl Halides	198
7.2.2	Palladium(0)-Catalyzed Carbonylative Synthesis of Ester Derivatives from Alkynes	201
7.2.3	Palladium(0)-Catalyzed Carbonylative Synthesis of Ester Derivatives Using Benzyl Amines	208
7.3	Palladium(0)-Catalyzed Carbonylative Synthesis of Amide Derivatives	209
7.3.1	Palladium(0)-Catalyzed Carbonylative Synthesis of β -Lactams	209
7.3.2	Palladium(0)-Catalyzed Carbonylative Synthesis of Five, Six, Seven-Membered Cyclic Amides	211
7.3.3	Palladium(0)-Catalyzed Carbonylative Synthesis of Benzamide Derivatives	214
7.4	Palladium(0)-Catalyzed Carbonylative Synthesis of Ketone Derivatives	217
7.4.1	Palladium(0)-Catalyzed Carbonylative Synthesis of Ketone Derivatives from Aryl Halides	217
7.4.2	Palladium(0)-Catalyzed Carbonylative Synthesis of Ketone Derivatives from Other Substrates	223
7.5	Palladium(0)-Catalyzed Carbonylative Synthesis of α,β -Alkynyl Ketones Derivatives	223
7.6	Palladium(0)-Catalyzed Carbonylative Synthesis of Other Carbonyl Compounds	225
7.7	Summary and Conclusions	232
	References	232

8	Palladium(II)-Catalyzed Carbonylations	235
	<i>Bartolo Gabriele, Nicola Della Ca', Raffaella Mancuso, Lucia Veltri, and Ida Ziccarelli</i>	
8.1	Introduction	235
8.2	Palladium(II)-Catalyzed Carbonylation of Alkanes and Saturated C—H Bonds	236
8.3	Palladium(II)-Catalyzed Carbonylation of Arenes and Heteroarenes	239
8.4	Palladium(II)-Catalyzed Carbonylation of Alkenes	243
8.4.1	Palladium(II)-Catalyzed Carbonylation of Unfunctionalized Alkenes, Dienes, and Allenes	243
8.4.2	Palladium(II)-Catalyzed Carbonylation of Functionalized Alkenes and Allenes	250
8.5	Palladium(II)-Catalyzed Carbonylation of Alkynes	255
8.5.1	Palladium(II)-Catalyzed Carbonylation of Unfunctionalized Alkynes	255
8.5.2	Palladium(II)-Catalyzed Carbonylation of Functionalized Alkynes	264
8.6	Palladium(II)-Catalyzed Carbonylation of Other Substrates	274
8.7	Summary and Conclusions	277
	References	278
9	Carbonylations Catalyzed by Other Second-Row Transition Metal Catalysts	295
	<i>Francesca Foschi and Gianluigi Broggini</i>	
9.1	Introduction	295
9.2	Zirconium Compounds as Carbonylation Catalysts	295
9.2.1	Carbonylation with Carbon Monoxide on Sulfated-Doped Zirconia as the Solid Acid Catalyst	295
9.2.2	Carbonylation of Zirconocene Complexes	299
9.3	Silver Compounds in Carbonylation Reactions	307
9.3.1	Koch-Type Reactions in the Presence of Silver Carbonyl Ion Catalyst	307
9.3.2	Koch-Type Reactions in the Presence of Silver Lewis Acids under CO Atmosphere	309
9.3.3	Carbonylative Coupling Reactions Promoted by Metal–Silver Bimetallic Catalysts	309
9.4	Molybdenum Compounds in Carbonylation Reactions	312
9.4.1	Formal Carbonylation Processes: Carbonylation of Ethylene and Methanol	312
9.4.2	Molybdenum Carbonyl Complexes as Catalysts and CO Source in Intermolecular Carbonylation Coupling Reactions of Aryl or Alkenyl Halides	314
9.4.3	Molybdenum Carbonyl Complexes as Both Catalysts and CO Source in Intramolecular Carbonylation Coupling Reactions	317

9.4.4	Metal-Catalyzed Coupling Procedures Using Molybdenum as the CO Source	319
9.4.4.1	Intermolecular Cross-Coupling Procedures	320
9.4.4.2	Cascade and Intramolecular Cross-Coupling Procedures	323
9.4.4.3	Carbonylative Cross-Coupling in the Presence of Transmetalation Partners	326
9.5	Summary and Conclusions	327
	References	328

Part III Miscellaneous Carbonylation Reactions 333

10	Carbonylations Promoted by Third-Row Transition Metal Catalysts	335
	<i>Anthony Haynes</i>	
10.1	Introduction	335
10.2	Methanol Carbonylation	336
10.2.1	Acetic Acid Production	336
10.2.2	Process Considerations and Mechanism for Rh Catalyst	337
10.2.3	Iridium Catalysts	339
10.2.3.1	Mechanism for Iridium Catalyst	339
10.2.3.2	Role of Promoters in Iridium-Catalyzed Methanol Carbonylation	342
10.2.3.3	Recent Developments	344
10.3	Hydroformylation	345
10.3.1	Iridium Catalysts	346
10.3.2	Platinum Catalysts	349
10.3.3	Osmium Catalysts	351
10.4	Other Carbonylation Reactions	351
10.4.1	Alkoxy carbonylation of Alkenes	352
10.4.2	Carbonylation Reactions Involving Alkynes	353
10.4.3	Oxidative Carbonylations	354
10.5	Summary and Conclusions	355
	References	356
11	Transition Metal-Free Carbonylation Processes	363
	<i>Lu Cheng, Binbin Liu, Fangning Xu, and Wei Han</i>	
11.1	Introduction	363
11.2	Transition-Metal-Free Carbonylation for the Synthesis of Aldehydes and Ketones	364
11.3	Transition-Metal-Free Carbonylation for the Synthesis of Esters and Lactones	375
11.4	Transition-Metal-Free Carbonylation for the Synthesis of Amides	385
11.5	Transition-Metal-Free Carbonylation for the Synthesis of Acids and Anhydrides	386

11.6	Transition-Metal-Free Carbonylation for the Synthesis of Acyl Chlorides and Alcohols	388
11.7	Summary and Conclusions	392
	References	393
12	Conclusions and Perspectives	397
	<i>Bartolo Gabriele</i>	
	Index	401