Contents

	Bart Limburg, Cristina Maquilón, and Arjan W. Kleij
1.1	Introduction 1
1.2	Iodine Activation of (Homo)Allylic Substrates 3
1.3	Substrate Activation Via Radical Addition/Photochemical Oxidation
	Processes 9
1.4	Substrate-Induced Activation of Oxiranes 12
1.5	Substrate-Involved Activation of Oxetanes and Azetidines 21
1.6	Concluding Remarks 21
	References 22
2	C-H Carboxylations with CO ₂ 29
	Uttam Dhawa, Isaac Choi, and Lutz Ackermann
2.1	Introduction 29
2.2	Transition-Metal-Catalyzed C-H Carboxylation 30
2.2.1	Copper-Catalyzed C–H Carboxylation 30
2.2.2	Cobalt-Catalyzed C-H Carboxylation 36
2.2.3	Nickel-Catalyzed C-H Carboxylation 36
2.2.4	Molybdenum-Catalyzed C-H Carboxylation 38
2.2.5	Ruthenium-Catalyzed C-H Carboxylation 38
2.2.6	Rhodium-Catalyzed C–H Carboxylation 39
2.2.7	Palladium-Catalyzed C–H Carboxylation 41
2.2.8	Silver-Catalyzed C–H Carboxylation 42
2.2.9	Iridium-Catalyzed C–H Carboxylation 45
2.2.10	Gold-Catalyzed C–H Carboxylation 45
2.2.11	Neodymium-Catalyzed C-H Carboxylation 45
2.3	Metal-Free C–H Carboxylation 46
2.3.1	Base-Mediated C–H Carboxylation 46
2.3.2	Electro-Catalyzed C-H Carboxylation 49
2.3.3	Lewis Acid-Mediated Carboxylation 49
2.3.4	Light-Driven Carboxylation 50
2.4	CO ₂ Carboxylation Promoted by Transition Metal Complexes 52
2.5	Conclusions 53

Photochemical and Substrate-Driven CO₂ Conversion 1

References 53

3	Transition-Metal-Catalyzed C–H Carboxylation 59
	Joaquim Caner and Nobuharu Iwasawa
3.1	Introduction 59
3.2	Direct C-H Carboxylation of Electron-Deficient Arenes and (Hetero)
	Arenes Catalyzed by Basic Complexes 59
3.3	Direct Carboxylation of Inert Csp ² —H Bonds 66
3.3.1	Rhodium-Catalyzed C–H Carboxylation Reactions 66
3.3.2	Palladium-Catalyzed C-H Carboxylation Reactions 76
3.4	Direct Carboxylation of Csp ³ —H Bonds 85
3.5	Summary and Outlook 89
	References 90
4	Fixation of CO ₂ in Organic Molecules with Heterogeneous
	Catalysts 95
	Dongcheng He, Hongli Wang, and Feng Shi
4.1	Introduction 95
4.2	CO ₂ Cycloaddition to Epoxide 96
4.2.1	Oxides 96
4.2.2	Zeolite Catalysts 97
4.2.3	Supported Nanoparticle and Lewis Acid Catalysts 98
4.2.4	Carbon and Its Derivatives 99
4.2.5	Salen, Porphyrin, and Phthalocyanine Catalyst 101
4.2.6	Ionic Liquid Catalyst 103
4.2.7	Metal-Organic Framework (MOF) Catalyst 108
4.2.8	Bifunctional Catalyst 112
4.2.9	Other Catalysts 120
4.3	Reactions of Aziridines and CO ₂ 120
4.4	Reactions of Polyalcohols/Olefins and CO ₂ 121
4.5	Reaction of Propargyl Alcohols/Propargyl Amines and CO_2 124
4.6	Reactions of Terminal Alkynes and CO ₂ 125
4.7	Formylation of Amines and CO ₂ 127
4.8	Methylation of Amines and CO ₂ 130
4.9	Other Reactions of Amines and CO ₂ 131
4.10	Hydroformylation of CO ₂ and Olefins into Alcohols 133
4.11	Reactions of Aromatic Halides and CO ₂ 134
4.12	Reactions of 2-Aminobenzonitriles and CO ₂ 136
4.13	Conclusions 137
	References 138
5	CO₂ Fixation into Organic Molecules via Carbon–Heteroatom Bond
5	Formation 155
	Yu-Nong Li, Hong-Ru Li and Liang-Nian He
5.1	Introduction 155
5.2	CO ₂ Conversion with C—N Bond Formation 157
5.2.1	Synthesis of Oxazolidinones 157
5.2.1.1	Oxazolidinone Synthesis from Aziridine and CO ₂ 158

5.2.1.2	Oxazolidinone Synthesis from Olefin, a Nitrogen Source, and CO_2 163			
5.2.1.3	Oxazolidinone Synthesis from Amino Alcohols and CO ₂ 164			
5.2.1.4	Oxazolidinone Synthesis from Carboxylative Cyclization of Propargyl Amines with CO ₂ 165			
5.2.1.5	Oxazolidinone Synthesis from Propargyl Alcohol, Aliphatic Amines/			
	2-Aminoethanols, and CO ₂ 167			
5.2.1.6	Photoinduced Radical-Initiated Carboxylative Cyclization of Allyl			
	Amines with CO_2 170			
5.2.2	Synthesis of Isocyanates and Linear Carbamates 172			
5.2.3	Synthesis of Urea Derivatives 174			
5.2.4	Synthesis of Quinazolines 175			
5.3	CO ₂ Conversion with C—O Bond Formation 178			
5.3.1	Synthesis of Cyclic Carbonates 178			
5.3.1.1	Cyclic Carbonate Synthesis from Epoxide and CO ₂ 178			
5.3.1.2	α-Alkylidene Cyclic Carbonate Synthesis from Carboxylative			
	Cyclization of Propargyl Alcohols with CO ₂ 181			
5.3.1.3	Cyclic Carbonate Synthesis from Carboxylative Cyclization			
	of 1,2-Diols with CO ₂ 182			
5.3.1.4	One-Pot Stepwise Synthesis of Cyclic Carbonates Directly			
	from Olefins or Vicinal Halohydrins with CO ₂ 183			
5.3.2	Synthesis of Linear Carbonates 185			
5.4	CO ₂ Conversion with C–S Bond Formation 187			
5.4.1	Synthesis of Dithioacetals 187			
5.4.2	Synthesis of Benzothiazolones 188			
5.4.3	Synthesis of Benzothiazoles 189			
5.5	Carbon–Heteroatom Bond Formation from the Captured CO ₂ or CO ₂ Derivatives 190			
5.6	Conclusions 191			
	Abbreviations 192			
	References 193			
6	Carbonyl-Ene Reactions of Alkenes with Carbon Dioxide 199			
	Yasuyuki Mori and Masanari Kimura			
6.1	Introduction 199			
6.2	Carbonyl-Ene Reactions of Alkenes with CO ₂ 199			
6.2.1	Organoaluminum and Pyridine Derivative-Mediated Coupling Reaction 199			
6.2.2	Light-Induced Copper-Catalyzed Carboxylation of Allylic C—H Bonds 204			
6.2.3	Copper and Aluminum Ate Compound System for Carboxylation of Allylic C—H Bond of Alkenes 208			
6.2.4	Cobalt-Catalyzed Carboxylation of Allylic C—H Bond of Terminal Alkenes 212			
6.2.5	Nickel-Catalyzed Carbonyl-ene-Type Reaction of Terminal Alkenes with CO ₂ 217 References 223			

7	Recent Advances in Electrochemical Carboxylation of Organic Compounds for CO ₂ Valorization 225
7.1	Luca Dell'Amico, Marcella Bonchio, and Xavier Companyó
7.1 7.2	Introduction 225 Electrochemical Carboxylation of Unsaturated
	Compounds 228
7.3	Electrochemical Carboxylation of Organic Halides 236
7.4	Stereoselective Electrochemical Carboxylations 245
7.5	Conclusions 249
	References 250
8	Photocatalysis as a Powerful Tool for the Utilization of CO_2 in Organic Synthesis 253
	Daniel Riemer and Shoubhik Das
8.1	Key Intermediate Involving Substrate with Late-Stage CO ₂ Addition/ Insertion 254
8.1.1	Unsaturated Substrates 254
8.1.2	Aryl Halides 264
8.1.3	Benzylic C—H Bonds 267
8.2	CO ₂ Substrate Adduct as the Key Intermediate 269
8.3	CO ₂ Radical Anion as a Key Intermediate 276
8.4	Hydroxycarbonyl Radical as a Key Intermediate 282
8.5	Conclusion and Outlook 284
	References 285
9	Direct Carboxylation of Alkenes and Alkynes 291
	Martin Pichette Drapeau, Johannes Schranck, and Anis Tlili
9.1	Introduction 291
9.2	Carboxylation of Alkenes 291
9.2.1	Stoichiometric Carboxylation of Alkenes 291
9.2.2	Catalytic Hydrocarboxylation of Alkenes 295
9.2.3	Photoinduced Hydrocarboxylation
	of Alkenes 300
9.2.4	Difunctionalization of Alkenes with Carbon
0.2	Dioxide 304
9.3	Carboxylation of Alkynes 305 Carboxylation of Terminal Alkynes 305
9.3.1 9.3.1.1	Synthesis of Propiolic Esters 305
9.3.1.2	Synthesis of Propiolic Acids 308
9.3.2	Synthesis of Acrylic Acid Derivatives 316
9.3.2.1	Hydrocarboxylation 316
9.3.2.2	Alkyl- and Arylcarboxylations 321
9.3.2.3	Sila- and Boracarboxylations 323
9.3.3	Carboxylation Leading to Cyclization Products 324
9.4	Conclusions 326
	References 327

10	Homogeneous Iron Catalysts for the Synthesis of Useful Molecules			
	from CO ₂ 331			
	Francesco Della Monica and Carmine Capacchione			
10.1	Introduction 331			
10.2	Reductive Processes 332			
10.2.1	Hydrogenation 332			
10.2.2	Hydrosilylation and Hydroboration 335			
10.2.3	Mechanistic Details 336			
10.3	Nonreductive Processes 337			
10.3.1	Cyclic Organic Carbonates and Aliphatic Polycarbonates from CO ₂			
	and Epoxides 337			
10.3.2	Mechanistic Details 346			
10.3.3	Stereochemistry of Cyclic Organic Carbonates 354			
10.3.4	Oxazolidinones 358			
10.4	Conclusions 360			
	References 360			
	1010101000 000			
11	NHC-catalyzed CO ₂ Fixations in Organic Synthesis 367			
• •	Vishakha Goyal, Naina Sarki, Anand Narani, and Kishore Natte			
11.1	Introduction 367			
11.2	Direct C–H Activation with CO ₂ 369			
11.2.1	C–H Activation of Terminal Alkynes 369			
11.2.2	~ · · · · · · · · · · · · · · · · · · ·			
11.2.3	•			
11.3	Carboxylation of Alkenes and Organoboronic Esters 376			
11.4	Oxidation of Aldehydes with CO_2 376 Cyclization Reactions with CO_2 379			
11.4.1	Synthesis of Cyclic Carbonates from CO ₂ and Epoxides 379			
11.4.2	Cyclization of CO ₂ in Presence of NHC–CO ₂ Adducts 380			
11.4.3	Cyclization of CO_2 in Presence of Metal NHCs Complexes 382			
11.4.4	Cyclization of Propargylic Amines 385			
11.5	Alkylation with CO ₂ 387			
11.5.1	N-methylation 387			
11.5.2	N-formylation 388			
11.6	Miscellaneous 390			
11.7	Summary 393			
11.,	References 393			
	References 575			
12	Silver-Catalyzed CO₂ Fixation 397			
-	Kodai Saito and Tohru Yamada			
12.1	Introduction 397			
12.2	Historical Background of Carbon Dioxide Fixation into Organosilver			
	Complexes 398			
12.3	Carboxylation of Terminal Alkynes 399			
12.4	Cascade Carboxylative Cyclization 404			
12.5	Silver-Catalyzed Sequential Carboxylative Cyclization of Propargyl			
	Alcohols 405			

12.6	Synthesis of Cyclic Carbonate 405
12.7	Catalytic Asymmetric Synthesis of Cyclic Carbonate 411
12.8	Three-Component Reaction of Propargyl Alcohols, Carbon Dioxide, and Nucleophiles 411
12.9	CO ₂ -Mediated Transformation of Propargyl Alcohols 412
12.10	Transformation of Amine Derivatives 417
12.11	Cascade Carboxylation and Cyclization of Unsaturated Amine Derivatives 417
12.11.1	Benzoxazine-2-one from o-Alkynylaniline and Carbon Dioxide 418
	Cascade Carboxylation – Addition to Allenes 418
	Three-Component Reaction of Carbon Dioxide, Amines,
	and Aryloxyallens 419
12.12	Domino Carboxylation – Cyclization – Migration of Unsaturated
	Amines 421
12.12.1	Carboxylation Involving C—C Bond Formation – Sequential
	Cyclization 423
12.12.2	Carboxylation of Enolate – Sequential Cyclization 423
12.12.3	Carbon Dioxide Incorporation Reaction Using Other
	Carbanions 427
12.13	Carboxylation of Arylboronic Esters 428
12.13.1	Functionalization of Terminal Epoxides 431
12.14	Conclusion 432
	References 433

Index 437