Contents

1	INTRODUCTION		
	1.1	Potential of particulate and solid continuum models 2	
	1.2	Objectivity of continuum soil models	
2	SIM	IPLE PSAMMOIDS 15	
	2.1	A prelude on solids	
	2.2	An introduction of simple psammoids 26	
	2.3	A shortcut of CSSM 37	
	2.4	A shortcut of hypoplasticity 44	
	2.5	Validations near state limits with cylindrical symmetry 50	
	2.6	Validation off state limits with cylindrical symmetry 56	
	2.7	Cuboidal deformations near state limits 64	
	2.8	Cuboidal deformations off state limits	
	2.9	Simple shearing at state limits 85	
	2.10	Shearing off state limits	
	2.11	General and outlook	
3	SIM	IPLE PELOIDS	
	3.1	A second prelude on solids	
	3.2	An introduction of simple peloids	
	3.3	Cam clay plus viscosity with cylindrical symmetry	
	3.4	Visco-hypoplasticity with cylindrical symmetry	
	3.5	Validation near and at state limits with cylindrical symmetry . 15:	
	3.6	Validation off state limits with cylindrical symmetry 163	
	3.7	Cuboidal deformations	
	3.8	Simple shearing	
	3.9	General and outlook	
4	PSA	AMMOIDS WITH REVERSALS 193	
	4.1	A third prelude on solids	
	4.2	Observed response of sand with reversals	

VII	0
$_{\rm IIX}$	Contents

	4.3 Attractors with force-roughness	3
	4.4 Elastoplasticity with back stress	
	4.5 Hypoplasticity with intergranular strain	5
	4.6 Seismically activated viscous effects	
	4.7 General and outlook	2
5	PELOIDS WITH REVERSALS	
	5.1 A fourth prelude on solids)
	5.2 Observed response of peloids with reversals	
	5.3 Visco-elastoplasticity with back stress	
	5.4 Visco-hypoplasticity with intergranular strain 281	
	5.5 General and outlook	3
6	PORE FLUID	
	6.1 Interfaces of water with gas and solids	1
	6.2 Pore fluid of psammoids	
	6.3 Pore fluid of peloids304	1
7	BRIDGING GAPS	3
	7.1 Saturated peloids with net pressures	3
	7.2 Unsaturated soils	2
	7.3 Cemented and transient particles	2
8	LOCALIZATION	3
	8.1 A fifth prelude on solids	
	8.2 Shear localization in psammoids	
	8.3 Shear localization in peloids	
	8.4 Cracking and channelling)
9	FABRIC 385	5
	9.1 Fabrics by state	5
	9.2 Fabrics by composition	l
10	BOUNDARY CONDITIONS397	7
	10.1 Soils at water and air	3
	10.2 Boundaries in the ground	3
	10.3 Soils at solids	5
	10.4 Placement and removal423	3
11	ONE-DIMENSIONAL EVOLUTIONS	7
	11.1 A prelude on the diffusion of pore water	
	11.2 Standing psammoid columns	
	11.3 Standing peloid and composite columns	
	O F	
	11.4 Standing soil columns with wave propagation	7

	Contents	XIII
	11.6 Peloid columns in slopes	
12	PLANE-PARALLEL EVOLUTIONS WITHOUT SSI 12.1 Psammoid heaps upon a solid base 12.2 Peloid and composite heaps on a solid base 12.3 Heaps upon yielding ground 12.4 Excavations 12.5 In-plane and anti-plane shaking 12.6 Normal faulting	486 495 502 513 522
13	PLANE-PARALLEL EVOLUTIONS WITH SSI 13.1 Psammoids at rigid guided walls 13.2 Peloids and composites at rigid guided walls 13.3 Guided rigid strips upon yielding ground 13.4 Rigid structures at the ground 13.5 Deformable structures at the ground 13.6 Strutted and back-tied retaining structures 13.7 Cavities and underground structures 13.8 SSI with reversals	540 554 563 576 590 600 613
14	AXI-SYMMETRIC EVOLUTIONS. 14.1 Triaxial tests. 14.2 Fills, excavations and ring structures. 14.3 Penetration. 14.4 Piles. 14.5 Silos. 14.6 Torsion.	638 649 660 675 687
15	LESS SYMMETRIC EVOLUTIONS 15.1 Two symmetry planes without SSI	713 725 741 754
16	CRITICAL PHENOMENA	790 793
EР	PILOGUE	803
Syı	mbols and Acronyms	807
Re	ferences	811
Ind	lex	837