

Contents

Preface xi

1 **Kinetic and Thermodynamic Considerations for Photocatalyst Design 1**
Frank E. Osterloh

1.1 Introduction 1
1.2 Mechanistic Aspects of Photochemical Reaction Systems 2
1.3 Common Parameters of Photochemical Reaction Systems 10
1.4 Differences Between Photocatalytic and Photosynthetic Reaction Systems 13
1.5 Conclusion 17
Acknowledgment 18
References 18

2 **Design of Reliable Studies on Photocatalysis: Logic, Concepts, and Methods 29**
Bunsho Ohtani

2.1 Photocatalysis 29
2.2 Reliability in Scientific Studies 30
2.2.1 Reliability in Science 30
2.2.2 Truth in Science: Unambiguousness Text 30
2.2.3 Logic in Scientific Studies 30
2.2.4 Examples of Propositions 31
2.2.5 Counter (Contrary) Evidence: Killer Card 32
2.2.6 Reliability in Scientific Studies 34
2.3 Methods in Photocatalysis Studies 34
2.3.1 Bandgap Determination by Tauc Plots 34
2.3.2 Action Spectrum Analysis 36
2.3.3 Light Intensity-Dependent Analysis 39
2.3.4 Photocatalytic Activity Evaluation 41

2.3.5	Correlation Between Photocatalytic Activity and Physical/Structural Properties	44
2.4	Design of Reliable Studies on Photocatalysis	46
	References	46

3 In Situ Spectroscopy for Mechanistic Studies in Semiconductor Photocatalysis 51

Jan P. Hofmann

3.1	Introduction	51
3.2	Challenges in In Situ and <i>Operando</i> Characterization in Photocatalysis	52
3.3	Overview of Methods and Examples from the Literature	54
3.3.1	(Transient) UV/Vis/NIR Electronic Spectroscopies	57
3.3.2	Vibrational Spectroscopies	59
3.3.2.1	Infrared Spectroscopy	59
3.3.2.2	Raman Spectroscopy and Microscopy	63
3.3.2.3	Nonlinear Spectroscopies: Second-harmonic Generation and Sum Frequency Generation Spectroscopies	64
3.3.3	Electron Paramagnetic Resonance	65
3.3.4	(Synchrotron) X-ray Spectroscopies	66
3.3.4.1	Photoelectron Spectroscopy	66
3.3.4.2	X-ray Absorption Spectroscopy (XAS, XANES, and EXAFS)	68
3.4	Outlook and Future Perspectives	68
	References	69

4 Principles and Limitations of Photoelectrochemical Fuel Generation 77

Bastian Mei and Kasper Wenderich

4.1	Introduction	77
4.2	Photoelectrochemical Energy Storage	78
4.2.1	Thermodynamic Requirements and Driving Forces	78
4.2.2	Basics of Semiconductors and the Semiconductor/Electrolyte Interface	80
4.2.3	Semiconductor/Electrolyte Interface Under Illumination	84
4.2.4	Devices and Efficiencies	86
4.2.4.1	Device Configurations	86
4.2.4.2	Device Figures of Merit and System Efficiencies	87
4.2.4.3	Theoretical Limitations of PEC Solar Fuel Production	90
4.2.4.4	Theoretical Limitations of PEC Solar Fuel Production – Beyond Water Splitting	93
4.2.5	Surface Modification	94
4.2.5.1	Integration of Electrocatalysts	95
4.2.5.2	Stability of PEC Device – Protection Layers/Surface Coatings	96
4.2.6	Short Summary	97
	References	98

5	Photocatalysis – The Heterogeneous Catalysis Perspective	101
	<i>Pawel Naliwajko and Jennifer Strunk</i>	
5.1	Introduction	101
5.1.1	General Function of Classical Heterogeneous Catalysts	102
5.1.2	Comparison of Classical Catalysis and Photocatalysis	103
5.2	Examples of Relevant Catalytic Properties of Photocatalysts	109
5.2.1	Consideration of Active Sites	109
5.2.2	Nanosized Gold in Alcohol Oxidation	109
5.2.3	Vanadium Oxide (Sub)monolayer Catalysts in Photocatalytic Alcohol Oxidation	113
5.3	Conclusions	117
	References	118
6	Insights into Photocatalysis from Computational Chemistry	127
	<i>Stephen Rhatigan and Michael Nolan</i>	
6.1	Introduction	127
6.2	Computational Descriptors	128
6.2.1	Light Absorption	128
6.2.2	Charge Carrier Separation	130
6.2.3	Surface Reactivity	134
6.3	Examples of Computational Studies of Photocatalyst Materials	138
6.3.1	Metal Oxides	138
6.3.2	Noble Metal Loading	139
6.3.3	Metal Chalcogenides and Metal Phosphides	142
6.3.4	Hetero- and Nanostructuring	144
6.3.5	Charge Localization Models	146
6.4	Conclusion	147
	References	149
7	Selected Aspects of Photoreactor Engineering	155
	<i>Dirk Ziegenbalg</i>	
7.1	Fundamentals of Photochemical Reaction Engineering	155
7.2	Radiation Field and Rate of Reaction	160
7.3	Light Sources	166
7.4	Particularities of Different Types of Photocatalysts	173
7.5	Types of Photoreactors	176
7.6	Conclusions and Outlook	181
	Symbols and Abbreviations	182
	References	184
8	Defects in Photocatalysis	187
	<i>Greta Haselmann and Dominik Eder</i>	
8.1	Introduction	187
8.1.1	Definition and Thermodynamics	187

8.1.2	Classification	188
8.1.2.1	Dimensionality	188
8.1.2.2	Location: Surface, Subsurface, and Bulk	189
8.1.3	Concepts in Defect Chemistry	190
8.1.3.1	Charge Neutrality	190
8.1.3.2	Intrinsic and Extrinsic Defect Pairs	190
8.1.3.3	Nonstoichiometry vs. Substoichiometry	190
8.1.3.4	Kröger-Vink Notation and Defect Diagrams	191
8.1.3.5	Diffusion and Segregation	192
8.1.4	How Are Defects Created?	192
8.1.4.1	Intrinsic Defects	192
8.1.4.2	Extrinsic Defects	193
8.1.5	Characterization of Defects	194
8.1.5.1	Quantification	196
8.1.5.2	In Situ	196
8.1.6	Effect of Defects on Material Properties	197
8.1.6.1	Structural Changes/Physical Structure	197
8.1.6.2	Electronic Changes/Electronic Structure	197
8.2	Influence of Defects on the Photocatalytic Performance	199
8.2.1	Location of the Defect	200
8.2.1.1	Bulk: Charge Carrier Generation and Migration	200
8.2.1.2	Surface: Adsorption Sites and Charge Transfer	202
8.2.1.3	Optimized Treatment Conditions and Surface-to-bulk Ratio	204
8.2.1.4	Subsurface Defects in Photocatalysis	206
8.2.2	Deep vs. Shallow Trap States	206
8.2.3	Strain-Induced Photocatalysis	207
8.2.4	Dynamic Defects	208
8.2.5	Defects of Higher Dimensionalities in Photocatalysis	208
8.2.5.1	Black TiO ₂	210
8.3	Concluding Remarks	213
	References	213

9 Photocarrier Loss Pathways in Metal Oxide Absorber Materials for Photocatalysis Explored with Time-Resolved

Spectroscopy: The Case of BiVO₄ 221

Rainer Eichberger and Sönke Müller

9.1	Introduction	221
9.2	Photodynamics of BiVO ₄ – Carrier Trapping and Polaron Formation	224
9.3	Conclusions	238
	References	238

10 Metal-free Photocatalysts 245

Josefine P. Hundt, Marco Weers, Vanessa Lührs, Dereje H. Taffa, and Michael Wark

10.1	Introduction	245
10.2	Graphitic Carbon Nitrides	246

10.2.1	Structure and Properties of g-C ₃ N ₄	246
10.2.2	Application as Photocatalytic Active Material	249
10.2.2.1	Photocatalytic Hydrogen Production	249
10.2.2.2	Photocatalysis-Assisted Organic Synthesis	250
10.2.2.3	Photocatalytic Reduction of CO ₂	252
10.2.2.4	Photocatalytic Degradation of (Organic) Pollutants	254
10.3	Covalent Organic Frameworks	254
10.4	Conjugated Polymers	257
10.4.1	Synthesis Strategies of Nanostructured Conducting Polymers	258
10.4.2	Application as a Photocatalytic Active Material	260
10.4.2.1	Hydrogen Evolution	261
10.4.2.2	Pollutant Degradation	261
10.5	Conclusions	263
	Acknowledgments	264
	References	264
11	Photocatalytic Water Splitting: Fundamentals and Current Concepts	269
	<i>Kazuhiro Takanabe</i>	
11.1	Solar Energy Conversion	269
11.2	Photocatalyst: Fundamental Concept	270
11.3	Reporting Protocol	272
11.4	Photon Absorption	276
11.5	Exciton Separation	276
11.6	Carrier Transport	277
11.7	Electrocatalysis	279
11.8	Mass Transfer: Electrolyte	280
11.9	Suppression of Back Reaction	280
11.10	Photocatalytic Overall Water Splitting: State of the Art	281
11.11	Concluding Remarks	283
	References	284
12	Photocatalytic CO₂ Reduction and Beyond	287
	<i>Minoo Tasbihi, Michael Schwarze, and Reinhard Schomäcker</i>	
12.1	Introduction	287
12.2	Photocatalytic Reactions Utilizing CO ₂	290
12.2.1	Photocatalytic Reduction of CO ₂ by CH ₄ (Dry Reforming)	292
12.2.2	Photocatalytic Reduction of CO ₂ by CH ₄ and H ₂ O (Steam Reforming)	296
12.2.3	Other Photocatalytic Reactions with CO ₂	298
12.3	Summary	298
	References	299
13	Photocatalytic NO_x Abatement	303
	<i>Jonathan Z. Bloch</i>	
13.1	Introduction	303
13.2	Basic Principle	304

13.3	Reaction Pathway	305
13.3.1	Intermediates, Selectivity	307
13.4	Reaction Kinetics	308
13.4.1	Guidelines for Accurate Performance Determination	310
13.5	Strategies to Improve the Performance	312
13.5.1	Strategies to Improve the Photocatalytic Activity	312
13.5.2	Strategies to Improve the Spectral Response	314
13.5.3	Strategies to Improve the Selectivity	317
13.5.4	Summary of Material Developments	319
13.6	Strategies to Incorporate the Catalysts into Building Materials	319
13.7	Results from Field Tests and Simulations	321
	References	323

14	Photoactive Nanomaterials: Applications in Wastewater Treatment and Their Environmental Fate	331
	<i>Jang S. Chang and Meng N. Chong</i>	
14.1	Introduction	331
14.2	Photoactive Semiconductor Nanomaterials and Their Applications in Wastewater Treatment	332
14.2.1	Nano-TiO ₂	332
14.2.2	Nano-ZnO	334
14.2.3	Nano-Fe ₂ O ₃	336
14.2.4	Nano-WO ₃	337
14.3	Environmental Fate and Behavior of Photoactive Nanomaterials in Wastewater Treatment Processes	338
14.3.1	Prevalence, Occurrence, and Routes of Nanomaterials into the Environment	338
14.3.2	Fate and Transformation Processes of Nanomaterials	339
14.3.2.1	Aggregation and Agglomeration	339
14.3.2.2	Photochemical Transformation	342
14.3.2.3	Redox Reactions	342
14.3.2.4	Adsorption of Macromolecules	343
14.3.2.5	Biotransformation	344
14.4	Environmental Effects of Nanomaterials Toward Wastewater Treatment Processes	344
14.5	Conclusion	345
	References	346